
Differential Gene Expression and Developmental Stages in Date Palm Fruit Varieties 
Final Report: Transcriptomics 
NYU-Tandon School of Engineering 
By Michael Dhar 
 
ABSTRACT 
The date palm (Phoenix dactylifera) fruit is one of the most economically important food crops 
in the Middle East and North Africa, but faces ongoing breeding and cultivation challenges. The 
more than 2,000 varieties of date palm are valued primarily for differences in their fruit traits. 
However, there has been little study until recently concerning the genetic basis for differing 
varietal traits. The current report attempts to add to this knowledge-base by investigating RNA-
Seq data from five varieties of date palm fruits, each sampled at five different time points in the 
fruit's development (45, 75, 105, 120, and 135 days post-pollination). The report describes 
differential expression, clustering and GO-term enrichment analyses of this RNA-seq data. 
These analyses attempt to elucidate the expression patterns characteristic of the five varieties, 
particularly their developmental stages. Results showed that the time-point replicates largely 
clustered together within varieties, as was expected Not all varieties followed this pattern, 
however. Moreover, time-point and gene-expression clustering together suggest broader 
developmental stages that span time periods. It was also found that developmental stages may 
have sub-stages. These stages show different patterns among the 5 varieties. GO-term analysis 
further showed that the most significantly enriched GO terms differed among the varieties, 
while their broader GO-term profiles were similar. The terms tend to be general, or related to 
the cell cycle and/or fruit development. Finally, a hypothesis was made linking a trait of the 
ChiChi variety to the GO terms of genes differentially expressed in ChiChi but not in Khalas. 
 
INTRODUCTION 
 
Date palm (Phoenix dactylifera) is a dioecious (male/female), perennial diploid (2n = 36) tree in 
the Arecaceae family, or palm trees (Hazzouri et al., 2015). It produces the date fruit, described 
as "One of the most economically important fruit trees in the Middle East and North Africa" 
(Mokhtar et al., 2016) and a major food and income source in that region (Chao and Krueger, 
2007). Production of the popular fruit is expected to continue to grow, in response to the 
increasing (human) population in the Middle East (Chao and Kreuger, 2007). 
 
The date palm fruit comes in more than 2,000 different cultivars, which vary in shape, color, 
size, sugar content, flowering time, and other traits (Mokhtar et al., 2016)(Hazzouri et al., 
2015). These different varieties or genotypes are valued primarily due to these fruit traits 
(Hazzouri et al., 2015). However, until recently, the detection of genetic differences among 
these many varieties depended on morphological markers alone, so "the pace of progress was 
bound to be slow" for breeding programs (Mokhtar et al., 2016).  
 
The last decade has seen more genetic-marker and genome-sequencing studies of date palm, 
including analyses of simple sequence repeats (SSRs) and sequencing of the mitochondrial and 
nuclear genomes (Mokhtar et al., 2016). This and further genetic studies of date palm are 
necessary to "improve date palm breeding for yield and other agronomic traits" and also to 
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answer questions about the plant's diversity (Hazzouri et al., 2015). Date palm continues to 
present breeding challenges due to its long life-cycle and juvenile period, as well as its dioecism 
(Chao and Krueger, 2007). However, even after recent genetic studies, "very little is known 
about the genomic diversity" of date palm, and further studies of this species' genetic variations 
are needed to ensure its continued production in the face of cultivation challenges (Hazzouri et 
al., 2015).  
 
RNA-Seq Data on Fruit Development 
 
One of the authors in the recent Hazzouri study on single nucleotide polymorphisms in date 
palm (2015) was Jonathan Flowers, Ph.D., at NYU Biology. His lab recently completed an RNA-
Seq experiment on date palm fruit that sequenced five different varieties (or 
cultivars/genotypes) of date palm fruit, each at five different time points in the fruit's 
development.  
 
The goal of that experiment, and of the ongoing analysis of the sequences obtained, was to 
understand changes in the metabolism of the fruit varieties and determine if the varieties have 
similar gene-expression patterns (Flowers J, personal communication, 2016). The sequences 
obtained in that experiment (unpublished data) were previously aligned to the reference 
genome under a bioinformatics pipeline written and run by the author of the current report. 
That pipeline produced a count table of the gene expression for the samples from the five 
varieties (see details in Materials below). No differential expression analysis had been done on 
this count table, however, until the work described in the current report. 
 
Objective and Importance of Current Analysis 
 
The current analysis was intended to examine the differential expression of the five varieties in 
order to elucidate their differential genetic expression and developmental patterns. To do so, 
differential expression, clustering and GO-term-enrichment analyses were performed. It was 
hoped that several questions could be answered, while also providing information to shape 
further analysis. Investigators wanted to know: 

• Do time points within varieties cluster together? 
• What are the developmental stages? Do these stages span time points? 
• How does the full library (all varieties and times) cluster, by time or variety? 
• How do genes cluster—i.e., what are the varieties' expression patterns? 
• How similar are the GO-term profiles of the varieties? 
• What types of GO terms characterize the differentially expressed genes of the varieties? 

 
An attempt to answer these questions through the differential expression analysis of the 
developing-fruit sequence data is the focus of the current report. This analysis aims to further 
elucidate the genetic basis for differences in date palm fruit varieties, and ultimately, 
potentially contribute to improvements in breeding programs and production of this important 
food crop, amid ongoing challenges in cultivation (Hazzouri et al., 2016)(Flowers J, personal 
communication, 2016). 
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MATERIALS 
 
Hardware 
 
The previous bioinformatics analysis pipeline, for alignment of the FastQ files, was completed 
using the following systems: Personal laptop: 2012 MacBook Pro; NYU Mercer cluster HPC, 
accessed via SSH; NYU-Abu Dhabi Butinah cluster HPC, accessed via SSH. The bioinformatics 
analysis for this Transcriptomics course final project was done using the following hardware: 
Personal computer: 2015 MacBook Pro; NYU Mercer cluster HPC, accessed via SSH. 
 
Software 
 
The previous alignment pipeline used the following software: R, R packages (Bioconductor, 
easyRNASeq), Perl, STAR, and BASH scripting. The current Transcriptomics course final project 
used the following software and packages: R, R packages (Bioconductor, DESeq2, Pheatmap, 
RColorBrewer, xlsx, and GOStats/GSEABase), BASH scripting, and InterProScan. 
 
Beginning Data 
 
The previous, alignment pipeline aligned 64 FastQ files derived from Illumina paired-end (2 x 
100bp) RNA-seq experiments done on date palm (Phoenix dactylifera) samples. The samples 
came from the fruit of five different varieties (cultivars, or genotypes) of date palm, all collected 
from trees in the United Arab Emirates. The varieties, all common commercial varieties in the 
Arabian Peninsula, are: ChiChi, Kenezi, Khalas, Lulu, and Nebeit Seif. The date palm GFF and 
protein FASTA files were obtained from the NCBI FTP site 
(ftp://ftp.ncbi.nlm.nih.gov/genomes/Phoenix_dactylifera/).  
 
The varieties were all sampled at different times, measured in days post-pollination: 45 days, 75 
days, 105 days, 120 days, and 135 days. From two to four biological replicates were sequenced 
for each time point for each variety, as follows: 
 
Table 1. Replicate counts for varieties/time points 

Variety T. 45 T. 75 T. 105 T. 120 T. 135 
ChiChi 2 3 3 3 2 
Kenezi 3 3 3 3 3 
Khalas 3 3 3 4 3 
Lulu 2 2 2 2 2 
Nebeit Seif 2 2 2 2 2 

 
Alignments/Count Table 
 
The sequencing experiment produced 64 FastQ files. These were then indexed and aligned on 
the NYU-Abu Dahbi Butinah HPC system using a BASH/Perl-coded pipeline written by M. Dhar in 
2015/2016 and executed in spring 2016, producing 64 associated BAM alignment files. The 
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same pipeline then extracted a count table from these BAM files using the simpleRNASeq 
function of the easyRNASeq R package. No differential expression analysis was done prior to 
this course on that count table. 
 
METHODS/RESULTS 
 
Project Workflow Diagram 
 
The overall workflow of this final project (including differential expression/clustering and GO-
term-enrichment steps) is summarized below: 
 
Diagram 1. Project Workflow 

 
 
 
Methods: Differential Expression - DESeq2 
 
The count table, produced on 12 May 2016, was the starting point for the differential 
expression and Gene Ontology enrichment analyses completed for this project. Differential 
expression was found for each variety, with time points as the factor. This was the primary 
differential-expression analysis of interest to the principal investigator, as it was predicted that 
the differing developmental patterns and time-courses among the five varieties would make an 
overall comparison of all libraries less biological meaningful. However, it was also of interest 
whether the entire library (all varieties, all times) would cluster primarily by time or variety. 
Therefore, differential expression was also determined for the overall library as a multifactor 
experiment, in terms of both time and variety. 
 
Differential expression was calculated using the R package DESeq2. This program was chosen 
because hypothesis tests for differential expression that require continuously varying data, as is 
found in microarrays for example, would not be appropriate for discrete, count data. Thus, t-
test and ANOVA would be inappropriate for this project. The DESeq2 package, by contrast, is 
designed to deal with the discrete count data resulting from an RNA-Seq experiment. DESeq2 
checks for differential expression using negative binomial generalized models (Love et al., 
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2016), meaning linear models that can handle non-normal error distributions and distributions 
of discrete yes/no values (as is characteristic of gene counts).  
 
DESeq2 actually offers several options for setting up the hypothesis test used in the program's 
differential expression analysis. The basic design uses the Wald test, and sets one level of the 
factor as the reference. The Wald test is a parametric test (Wald test, Wikipedia) that evaluates 
if the estimated standard error of log2 fold change is zero (Love et al., 2016). This test was done 
on all varieties and on the overall library. 
 
DESeq2 also allows for time-series hypothesis testing. Instead of comparing all levels of a factor 
against a reference level, this design tests each level of the factor (as a time series) against one 
another. This is done using the likelihood-ratio test (LRT), which is similar to ANOVA and can be 
used to "test for any differences over multiple time points" (Love et al., 2016). It does so by 
evaluating a "full model," then a "reduced model," with the time levels removed, and then 
checking for differences (Love et al., 2016). This test design was also conducted on all varieties 
with time as the factor, and on the comprehensive library, with both time and variety as 
factors. It was chosen to perform both Wald and LRT tests because a) the PI suggested using 
Wald with a reference level of 45 to provide a basic analysis, while b) the LRT model seemed 
the most relevant of DESeq2's hypothesis designs for this project's time-series data. 
 
Methods: Normalization 
 
DESeq2's basic differential-expression function expects non-normalized count tables as input. 
This is because the package does internal normalization for library size (Love et al., 2016). 
DESeq2's results function, applied to the differential-expression object, "automatically performs 
independent filtering based on the mean of normalized counts for each gene, optimizing the 
number of genes which will have an adjusted p value below a given FDR cutoff, alpha" (Love et 
al., 2016). The adjusted p-values (padj) in the results table can thus be used to filter by a given 
FDR cutoff value (Love et al., 2016). An alpha of 0.05 was used in this analysis. 
 
The package recommends that other transformations be conducted on the data for use in 
hierarchical clustering and other visualization functions. These transformations include 
regularized-log (RLD) and variance-stabilized (VSD) transformations. RLD transforms data to 
log2 scale, and is recommended for clustering (Flowers, personal communication, 2016)(Love et 
al., 2016). It was used for hierarchical clustering and heat maps in the current project. VSD 
relies on a nonparametric fit for dispersion, using a "closed-form expression" instead of 
statistical parameters (Love et al., 2016). It was used for heat maps. 
 
Methods: DESeq2 Function - Differential Expression/Clustering 
 
R functions were written to perform differential expression analysis steps and produce a 
DESeqDataSet (dds) object for each variety in terms of the time factor. These steps — 
estimating size factors, estimating dispersions, and performing the hypothesis test — are 
wrapped into a single DESeq2 command (Love et al., 2016). One function was written to do the 
above using R's basic (Wald) test (Appendix 1), and one to do the time-series (LRT) test 
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(Appendix 2). Each function also accepted a Boolean argument to switch it to a multi-factor test 
that included factors for both time and the different varieties. This switch was used to perform 
a multi-factor test on the entire library (all varieties and times) under both the Wald and LRT 
hypothesis tests.  
 
Results: Differential Expression  
 
Lists of differentially expressed genes were produced for each sample and for the multifactor 
all-varieties, all-times test. These lists were printed out by the DESeq2 functions described 
above, and the lists saved for later use in GO analysis. Numbers of differentially expressed 
genes (padj > 0.05) were obtained for each variety and for the all-variety experiment, under 
both the Wald and LRT hypothesis designs (Table 2).  
 
Table 2. Differentially expressed gene counts for all varieties 

Variety # Differentially Expressed 
genes (p < 0.05) 
Wald Test 

# Differentially expressed 
genes (p < 0.05) 
Time Series (LRT) 

ChiChi 14,930 18,761 
Kenezi 16,352 18,861 
Khalas 10,766 14,227 
Lulu 17,464 21,024 
Nebeit Seif 17,417 21,226 
All Varieties 18,523 22,142 

 
Methods: Clustering  
 
The DESeq2 functions also extracted the results from the dds objects created, and then 
produced the following output, conducting hierarchical clustering and producing various 
visualizations:  
 

• A hierarchical clustering graph. It was found that there was no difference in this 
clustering between the Wald and LRT outputs. Therefore, when silhouette plots were 
made of each variety in terms of time, this was done only with the Wald test results, 
which were quicker. Clustering was also done for the full library. (Clustering was done 
using the RLD transformation, as this transformation was recommended by both 
DESeq2 and the principal investigator as most appropriate for hierarchical clustering.) 

• Hierarchical clustering, silhouettes and boxplots for differentially expressed genes. This 
was done in LRT, because this method produced a greater number of differentially 
expressed genes. It was desired to capture all of them in the gene clustering. 

• A heat map of the expression for the variety's genes using RLD transformation (also 
done for full library) using the Pheatmap R package 

• A heat map of the distances between the samples for the variety (also done for full 
library)  
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Results: Clustering - Finding Developmental Stages 
 
Results: Clustering of times within varieties  
 
One of the primary questions investigators wanted to address in this project was how the time 
points within varieties clustered. Hierarchical clustering of the differentially expressed genes in 
terms of sample (here, meaning the time points for each variety) provides some answers to 
that question. (Sample hierarchical clustering was done using both the Wald test and LRT 
designs, but no differences were found in the results from the two methods.) 
 
The sample clustering of Nebeit Seif (Graph 1) gives an example of an "expected" grouping of 
time periods: Replicates from separate time periods form clusters together, and the closer time 
periods then form larger clusters. For example, the 45-day replicates cluster together at the 
lowest clustering level, then form a larger cluster with the 75-day replicates; the two then 
cluster with day-105 replicates. Day-120 replicates similarly cluster together, then join the day-
135 cluster.  
 
Graph 1. Sample (time-point) hierarchical clustering for Nebeit Seif variety  

 
 
Not all of the varieties clustered as neatly into time periods, however. Overall, h-clustering of 
times for the varieties showed three main patterns of clustering: 
 
Pattern 1 - By Time: The time periods cluster together, and then into larger clusters that make 
sense chronologically, as in Nebeit Seif, above. The Lulu sample follows a similar pattern, 
differing only slightly, in how the higher groups are organized: For example, the day-75 cluster 
groups into a larger cluster with the day-105 cluster, instead of with the day-45 cluster. 
(Interestingly, these two varieties were the only ones with less than three replicates for all time 
periods, which may warrant further investigation.) 
 
Pattern 2 - Outlier: The time periods cluster as might be expected, as above, but there is a 
notable outlier. This was true for the ChiChi variety, in which the day-135 replicates clustered 
very distantly from all other groups (Graph 2). 
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Graph 2. Sample (time-point) hierarchical clustering for ChiChi variety  

 
 
Pattern 3-"Umbrella" Stages: Some of the individual groups of time replicates fail to group 
together at the lowest clustering level. Instead, they can be found grouping with replicates from 
other time periods. This suggests that the time periods in these varieties do not represent 
distinct developmental stages. Instead, there may be "umbrella" developmental stages that 
encompass more than one of the sampled time periods. This pattern characterized the Kenezi 
and Khalas varieties: 

• Kenezi: The 135-day and 120-day replicates can be found interspersed together in the 
lowest level of clustering (Graph 3).  

• Khalas: Three of the time periods' replicates can be found interspersed at the lowest 
cluster level. Some 120-day replicates are interspersed with 105-day replicates, while 
the remaining 120-day replicates are interspersed with the 135-day replicates. This 
suggests two umbrella stages (105-120 and 120-135) or an overall umbrella 
developmental stage spanning 105 to 135 days (Graph 4). 
 

Graph 3. Sample H-cluster for Kenezi  Graph 4. Sample H-cluster for Khalas 
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Results: Developmental Stages via K Grouping 
 
Despite the clustering of time-period replicates together in most varieties, developmental 
stages could still span multiple time periods in those varieties. For example, though day-45 and 
day-75 replicates cluster separately at the lowest levels, their groups may be close enough to 
label them one developmental stage. To further elucidate the developmental stages, the 
variety clusters were divided into k numbers of groups. Different values of k were evaluated, 
based on a visual inspection of the h-clustering dendrograms, and the best fit decided by 
looking at silhouette plots, comparing average silhouette width and the size of groups that 
failed to fit into any of the proposed k groups.  
 
The most obvious grouping for ChiChi would be into the five time periods, which separate so 
neatly in the dendrogram. A k=5 grouping indeed worked well, producing an average silhouette 
width of 0.44, and the groups are as expected: splitting neatly on the five time periods. Even 
better, however, was 3 groups for ChiChi, with an average width of 0.45, and again showing the 
strong outlier of time 135 (Graph 5).  
 
Unsurprisingly, 5 groups did not work as well for Khalas, producing an average width of 0.37, 
with some replicates in their own clusters and one group showing a width of 0. Echoing the h-
cluster dendrogram, time periods in the k=5 grouping did not necessarily cluster together. A 
split of k=2 groups worked best for Khalas, splitting between the early times and the later, 
interspersed times, and giving an average width of 0.4 (Graph 6).  
 
Graph 5. Silhouette plot for ChiChi sample groups  Graph 6. Silhouette for Khalas sample groups 
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Note, here and elsewhere, the groups ChiChi and Khalas are used to represent the range of 
clustering patterns. Khalas epitomizes the "umbrella" clustering of time periods, while ChiChi 
represents both the expected time groupings and the occurrence of an outlier group. 
 
Results: Alternative time-period clustering 
 
Alternative time-period clusterings were explored (Graphs 7-8). ChiChi clustered nearly as well 
into two groups, with an average silhouette width of 0.44, just 0.01 less than with 3 groups. 
Khalas clustered reasonably well into 4 groups, with an average silhouette width of 0.36. This is 
slightly less than for five groups, but this grouping does not involve any clusters with width 0 or 
that consist of only 1 replicate. Moreover, these alternatives will become important later on. 
 
Graph 7. Silhouette for alt ChiChi sample grouping  Graph 8. Silhouette for alt Khalas sample grouping 

 
 
Results: Multifactor experiment sample clustering 
 
A multifactor differential expression analysis was also applied to all times and all varieties. 
Results showed that time was, as predicted, a more important factor in the clustering than was 
variety. Reading through the dendrogram of the multifactor experiment shows that the 
samples cluster by time into three main groupings: 
 

• 1) Late: 120-135: Contains day-135 replicates (from Khalas, Lulu, and Kenezi) and day-
120 replicates (from Nebeit Seif, Khals, and Kenezi). 

• 2) Early: 45-75: Contains day-45 replicates (from all five varieties) and day-75 replicates 
(from ChiChi, Khalas, and Nebeit Seif). 

• 3) Mostly Middle: 105-120: Contains day-105 replicates (from all five varieties) and day-
120 replicates (from Khalas and ChiChi), with stray replicates from two other times (Lulu 
75 days and Khalas 135 days). 

 
This division is best visualized in a sample-distance heat map (Graph 9), as the dendrogram is 
quite dense. 
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Methods: Clustering of Genes, Interpreted by Developmental Stage 
 
Clustering of the genes was also performed, and the two types of clustering (by time period and 
by genes) help make sense of one another. That is, the individual time periods and umbrella 
clusters of time periods may represent developmental stages. If so, one would expect genes to 
turn on or off in patterns consistent with those stages; thus, genes might be expected to cluster 
into groups that are over-expressed during one development stage and underexpressed in 
other stages — and vice versa. Heat maps of gene expression provide a first look into how gene 
expression may be overlaying the developmental stages in this way. Further evaluations of 
these conclusions are provided via hierarchical clustering and silhouette plots. 
 
Methods: Gene expression heat map 
 
The gene expression heat maps show gene expression data from the count matrix. DESeq2 
provides procedures for producing these maps using various transformations of the expression 
data. Gene heat maps were produced for this experiment using both the regularized-log (RLD) 
and variance-stabilized (VSD) transformations (see Methods) of the expression data. The two 
transformations showed mostly the same patterns, with slightly higher overall expression 
portrayed using VSD. The RLD versions are shown here, because they better highlight the 
contrast between expression levels in different time periods. 
 
 
 

Khalas−135
Khalas−135
NebeitSeif−120
NebeitSeif−120
Lulu−120
Lulu−120
Lulu−135
Lulu−135
Chichi−135
Chichi−135
Khalas−120
Kenezi−120
Kenezi−120
NebeitSeif−135
NebeitSeif−135
Kenezi−135
Kenezi−135
Kenezi−120
Kenezi−135
Chichi−75
Chichi−75
Chichi−75
Khalas−75
Khalas−75
Khalas−75
NebeitSeif−75
NebeitSeif−75
Kenezi−75
Kenezi−75
Kenezi−75
Khalas−45
Chichi−45
Chichi−45
Khalas−45
Khalas−45
NebeitSeif−45
NebeitSeif−45
Lulu−45
Lulu−45
Kenezi−45
Kenezi−45
Kenezi−45
Lulu−75
Lulu−75
NebeitSeif−105
NebeitSeif−105
Lulu−105
Lulu−105
Khalas−120
Khalas−105
Khalas−105
Khalas−105
Khalas−120
Chichi−120
Chichi−120
Chichi−120
Kenezi−105
Kenezi−105
Kenezi−105
Chichi−105
Chichi−105
Chichi−105
Khalas−120
Khalas−135

0

50

100

150

200

250

• 120-135

• 45-75

• 105-120 
(mostly)

Graph 9. Sample-Distance Heat Map: All Varieties, All Times 



 

 

12 

Results: ChiChi Gene Clustering 
 
The gene-expression heat map for variety ChiChi (Graph 10) shows marked increase in 
expression for a particular set of genes in the 135-day group. This heat map also shows a 
marked "cool" area, of low gene expression, covering the 135-day period, bleeding over 
somewhat into day-120. The rest of the genes seem to show lower levels of the same pattern: 
either higher expression in 135, with relatively lower expression elsewhere, or lower expression 
in 135, with relatively higher expression elsewhere. 
 
Graph 10. Gene expression (RLD) heat map for variety ChiChi 

 
 
This suggests that the genes for variety ChiChi could cluster into two groups: 1) those with high 
expression in time 135 and low expression elsewhere, and 2) those with lower expression in 
135 and relatively higher expression elsewhere. That is, one might predict two major 
developmental stages: time 135 and everything preceding it. In fact, hierarchical clustering of 
the genes bears out a 2-group clustering of ChiChi genes (Graph 11): 
 
Graph 11. Hierarchical clustering for differentially expressed genes in ChiChi 
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A silhouette plot of ChiChi's gene cluster into k=2 groups (Graph 12) provides further support 
for this interpretation. This is the best fit of several k-values investigated, providing the highest 
average silhouette width (0.58) and smallest ungrouped tails (left-pointing parts of the plot): 
 
Graph 12. Silhouette for k=2 grouping of differentially expressed genes, ChiChi 

 
 
Results: ChiChi's 2 developmental stages 
 
The clustering of genes, in combination with the time-period clustering above demonstrating an 
outlier 135-day grouping, suggests two major developmental stages for the ChiChi variety: 135 
days and everything else. That is, though the earlier time-point replicates cluster into 5 
separate groups, more significant genetic changes happen in the 135-day period than occur 
between any of those earlier clusters. Thus, the alternative time-period clustering of ChiChi into 
2 groups above (Graph 7) fits with the gene-clustering data.  
 
Results: Khalas gene clustering 
 
At first glance, the gene-expression heat map for Khalas (Graph 13) also shows evidence for two 
groupings of genes, in concordance with the time-period clusterings described earlier. That is, it 
suggests the umbrella group of 105-135 may divide the genes into two expression patterns: 1) 
those that are overexpressed in the 105-135 umbrella and underexpressed elsewhere (in the 
lower times of 45-75), and 2) those that are underexpressed in the umbrella and overexpressed 
elsewhere:  
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Graph 13. Heat map of expression for differentially expressed genes (RLD), Khalas variety 

 
 
Clustering and k=2 grouping of the genes for Khalas, however, do not support this 
interpretation, producing a silhouette with low average width and large tails of non-grouping 
genes. An inspection of the h-clustering dendrogram and experimentation with different k-
values (from 2 to 8) pointed to k=4 as the best grouping of Khalas genes, with an average 
silhouette width of 0.39 (Graphs 14-15). 
 
Graph 14. Silhouette for k=2 grouping, Khalas genes  Graph 15. Silhouette for k=4 grouping Khalas genes 
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Results: Re-evaluating Khalas gene heat map 
 
With this information, the Khalas gene heat map may be viewed in a different light, and a 
hypothesis made about how the developmental stages and how genes are clustering. A division 
of the Khalas gene heat map into either four overlapping stages or two large stages that contain 
sub-stages makes sense. The latter is described here (visualized in Graph 18):  
 

• Stage 1) 45-75 Days 
• Stage 1a) 45 Days 
• Stage 2) 105-135 Days 
• Stage 2b) 120-135 Days 

 
Groupings of genes then overlay these developmental stages, splitting into the following sets of 
genes: 
 

• Group 1) Genes underexpressed in Stage 2b, but not elsewhere 
• Group 2) Genes underexpressed in Stage 1a, but not elsewhere 
• Group 3) Genes highly overexpressed in Stage 2, expressed at medium level in Stage 1 
• Group 4) Genes underexpressed in Stage 1, expressed at medium-to-high levels in 2 

 
These gene groupings and developmental stages can be seen in the annotated heat map for 
Khalas (Graph 18). This set of overlapping stages doesn't perfectly match with the k=4 grouping 
of time periods for Khalas found earlier, likely due to the overlaps. In fact, it fits better with the 
k=2 grouping of Khalas time periods, with Stage 1 referring to the earlier time periods and Stage 
2 referring to the umbrella 105-135 period.  
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Methods: Gene Ontology Enrichment  
 
The lists of differentially expressed genes for each variety, and for all varieties and times in the 
multi-factor design, provided the starting point for the Gene Ontology (GO) term enrichment 
analysis. Because no GO annotation was available for the date palm organism, the GO terms for 
each gene were obtained using the InterProScan program on the NYU HPC Mercer cluster. 
Interproscan is a Java-based software that will search a given protein sequence against family 
and domain databases. It can also return the associated GO terms for the proteins (Jones et al., 
2014) 
 
Several BASH scripts were written to obtain these GO terms using InterProScan. First, because 
InterProScan returns GO terms identified by protein id's, a BASH script was written to match 
the gene id's from the date palm count table to protein id's (Appendix 4). This was done using 
the date palm GFF. Because the GFF lists gene, rna and protein ids in different lines, genes were 
matched to their children rnas, and then rnas to their children proteins to make a list of gene 
ids paired with their corresponding protein id's. 
 
Because of the size of the date palm protein FASTA file, another BASH script split the FASTA file 
into 100 sub-files to submit to InterProScan (Appendix 5) as a PBS array job (Appendix 6). 
Another script extracted the protein id's and GO terms from the InterProScan results, found the 
matching gene id's using the gene-protein list produced as described above, and produced a file 
readable by R as a GOStats goFrameData object (Appendix 7). Finally, a BASH script used the 
above file to produce universe and gene lists that consisted of only those genes that had 
corresponding GO terms (Appendix 8).  
 
These lists and the goFrameData object were used as input for the GO term enrichment R script 
(Appendix 9). In R, a function was written that would be able to run the GOstats GO-term 
enrichment workflow on each variety of date palm. The function called the GOstats 
hypergeometric test to find enriched GO terms, as the hypergeometric tests evaluates the 
chances of finding a given number of GO term matches in a given set (universe) by chance 
(Falcon and Gentelman, 2007). The R function that applies the GOstats method was written to 
run on either LRT- or Ward-produced gene lists, depending on a Boolean argument.  
 
Methods: Calling GO-enrichment function and contrasting GO-term profiles 
 
A loop was written that would call the function on each date palm variety's gene list. That same 
loop also extracted the top 10 GO terms for each variety and the top 50 GO terms for each 
variety. Here, "top 10" and related terms refer to the first "n" terms returned by the GO term 
enrichment function, which are those with the "n" lowest p-vals. These were compiled into 
comprehensive vectors (one containing all the top 10s for all 5 varieties, and one containing all 
the top 50s for all 5 varieties). Then, using R's table and sort functions, the most common 
occurrences in those two lists were found (Appendix 9). This was done in an effort to 
characterize how similar or different the GO term profiles were for the five varieties.  
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Methods: Finding Gene Ontology Enrichment for Non-Overlapping Variety Genes 
 
Finally, based on feedback on the presentation for this project, an attempt was made to find 
the Gene Ontology terms that characterized those differentially expressed genes that were 
non-overlapping between two date palm varieties. That is, the differentially expressed genes 
for Variety A and Variety B were compared using the R command "setdiff" to find those genes 
that appeared in Variety A's list of differentially expressed genes but not in Variety B's list, and 
vice versa (Appendix 10). GO-term enrichment using the GOStats hypergeometric test was then 
applied to those non-overlapping gene lists. The resulting top enriched terms for several 
varieties in comparison with Khalas were obtained (Appendix 10). (Khalas was chosen as a 
primary comparison it is a well-known and popular variety, which seemed to have more 
information available on fruit traits.) For example, top-10 lists of GO terms were found for 
"ChiChiNotKhalas" (those genes differentially expressed in ChiChi but not in Khalas) and for 
"KhalasNotChiChi" (the reverse). 
 
With these non-overlapping GO-term lists in hand, a search was made for published studies of 
date palm fruit traits. This was done in the hopes that the non-overlapping GO-term lists might 
help explain some of the salient traits of the different fruit varieties studied here. A hypothesis 
was made linking a differential trait of ChiChi (fruit weight) to the non-overlapping GO-term list 
for ChiChi in comparison to Khalas (see Results below). The corresponding gene list for this GO-
term list was then produced. This was a list of genes that both a) are associated with a term in 
the non-overlapping GO term list and b) are present in the ChiChi-not-Khalas gene list. These 
were found by searching through the original goFrameData object file for all genes associated 
with those GO-term IDs ("GOgenedata_d_3rdrun.txt") and then choosing only those resulting 
genes that appeared in the original non-overlapping gene list ("ChiChiNotKhalas"). This was all 
done via a BASH script (Appendix 11). 
 
Results: Gene Ontology Enrichment  
 
GO term enrichment profiles show that the different varieties are characterized by different top 
10 GO term profiles. However, the broader collections of GO terms associated with each 
sample are more similar. First, a look at the top 10 enriched GO terms for ChiChi and Khalas 
(Table 3), the two varieties used in this paper to best represent the range of clustering patterns 
among the varieties. These terms were derived from the experiment using the Wald test. 
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Table 3. Top 10 enriched GO terms for ChiChi, Khalas (Wald hypothesis test) 

 
 
The experiment that used the LRT time-series design produced different top 10 lists of GO 
terms (Tables 4).  
 
Table 4. Top 10 enriched GO terms for ChiChi, Khalas (Likelihood-ration hypothesis test) 

 
 
While these lists show individual similarities, more interesting is how similar or different the top 
10 profiles are for all the varieties. The table and sorting technique described in Methods above 
was performed to provide this information (Table 5).  
 
Table 5. 

 
 
The top 10 terms, then, in each variety differ significantly from one another. 
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While the top 10 terms for each variety may differ, it is possible, and even likely, that a broader 
collection of "top" terms from each variety would show more similarity. Finding the 
commonality among all terms for each variety would likely prove of little use, since a term 
could easily appear in all five lists simply by occurring at position 1 in some groups and position 
171 in others, for example. Therefore, a more meaningful, but still broader method was chosen: 
Find the most commonly occurring terms in the collection of top 50 terms from each variety 
(Table 6).  
 
Table 6. 

 
 
Results: Gene Ontology Enrichment for Non-Overlapping Variety Genes 
 
Enriched Gene Ontology terms were found for the non-overlapping gene lists of several 
varieties in comparison with the Khalas variety. Table 7 shows the resulting GO list for those 
differentially expressed genes found in ChiChi but not Khalas; Table 8 shows the list for those 
differentially expressed genes found in Khalas but not ChiChi. 
 
Table 7. Top 10 enriched GO terms for 'ChiChi-Not-Khals' Table 8. Top 10 Go Terms for 'Khals-Not-ChiChi' 

 
 
The search for specific data on differential traits among the fruit varieties studied here 
identified a promising study by Al-Abdoulhadi et al. (2011). This analysis of three varieties — 
Khalas, ChiChi (or "Sheshi"), and Reziz — found the following comparative traits for two 
varieties of interest in the current project: 
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Khalas: 

• Maximum length 
• Least fruit moisture 
• Lightest color (yellow) 

 
ChiChi (Sheshi) 

• Highest fruit breadths 
• Highest weight 

 
Examining these traits, in light of the non-overlapping GO terms found for ChiChi vs. Khalas, at 
least one hypothesis can be made for a connection between GO terms and differential traits. 
This can be done for the greater weight found in ChiChi (<8 grams for small fruits, > 11 grams 
for larger fruits) vs. Khalas (<7 grams for small fruits, >10 grams for large fruits) (Al-Abdoulhadi 
et al., 2011). 
 
As Table 7 shows, ChiChi's non-overlapping GO terms, in relation to Khalas, are enriched in 
terms related to protein synthesis and metabolism ("translation," "peptide biosynthetic 
process", "translation," etc.) and amide synthesis and metabolism. It may be proposed, 
therefore, that the increased weight of ChiChi fruits relative to Khalas is related to a greater 
dedication to production of protein tissues. Furthermore, ChiChi also shows non-overlapping 
GO enrichment in nitrogen synthesis and metabolism (e.g., "organonitrogen compound 
biosynthetic process"). Nitrogen has been shown to play a role in cell division in developing 
fruit tissues (Yara, "Role of Nitrogen"), so this relative GO enrichment may also help explain the 
greater weight of ChiChi, in that this variety devotes more resources to generating additional 
tissue. Finally, ChiChi's non-overlapping terms of gene expression and photosynthesis may, in 
general, play a contributing role in the greater relative production of tissue in the ChiChi 
variety, compared to Khalas.  
 
With this finding, the genes associated with those traits for ChiChi were compiled into a file, 
"go_gene_b_cnk.txt," for potential use in further analysis. 
 
DISCUSSION 
 
Differential Expression 
 
As shown in Table 2, the time-series LRT approach produced greater numbers of differentially 
expressed genes than the Wald test. This is to be expected, as the LRT design compares 
differences in multiple time points against one another, not just against a single reference time. 
Both hypothesis designs, however, produced large numbers of differentially expressed genes. 
This is partly due to the number of factor levels: five different time points for each variety. A 
test-run of DESeq2 on only two time points for the ChiChi variety (105 and 120) produced a 
relatively smaller gene list of about 5,000 genes, which is still large. Given that these are 
developing fruit, then, it is likely that a large number of genes are over- and under-expressed as 
development proceeds. That is, development of fruit is a very active period genetically.  
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That large number, combined with the developmental-stage and gene clustering results found, 
suggests that this data reflects the expression patterns of important developmental genes for 
the date palm fruit. This supports the conclusion that the differentially expressed genes 
examined here do in fact represent the genetic basis for the differential fruit traits among the 
five varieties considered.  
 
Time Point Clustering/Developmental Stages 
 
This analysis of gene expression data in developing date palm fruit answered many of the 
questions of interest about time-period clustering and developmental stages. Clustering of time 
points showed that, in general, replicates for different time points do group together. However, 
this clustering also showed evidence for developmental stages that spanned multiple time 
points, what this paper has referred to as "umbrella" stages.  
 
Overall, when clustering both time points and cultivar variety in a multi-factor experiment, the 
samples cluster mostly by time. Here, again, however, the time points do not necessarily neatly 
group, with 120-day replicates, in particular, appearing in multiple groups. 
 
Clustering of genes showed that gene groups can further elucidate the developmental stages. 
Examining gene clusters and heat maps shows which time periods, and spans of time periods, 
likely experience increased and decreased expression of different sets of genes over a fruit's 
developmental process. This analysis revealed the likely presence of 2 major developmental 
stages for variety ChiChi and 2 subdivided developmental stages for variety Khalas.  
 
The examination of Khalas, in particular, shows how clustering of genes into expression groups, 
in combination with an examination of the clustering of time periods, can elucidate 
developmental stages. In summary, as Graph 18 shows, the developmental timeline of Khalas 
fruit may be divided into two overarching stages, which reflect the clustering information 
obtained for Khalas' time periods. These two stages, as shown by the information obtained 
about gene groupings, divide into early and late periods: One group of genes is expressed at a 
moderate level over Stage 1, while another group is suppressed in the early part of Stage 1, but 
not later. One group of genes is overexpressed over the course of Stage 2, relative to Stage 1, 
while another group is suppressed in the second half of Stage 2, but not the first half of Stage 2. 
 
That characterization of the Khalas developmental timeline differs markedly from the one 
proposed here for ChiChi, which shows two major developmental periods (time 135-days and 
everything earlier) and two gene groups (those overexpressed at 135 days and relatively 
underexpressed elsewhere, and those underexpressed in 135 and relatively overexpressed 
elsewhere). These proposed, differing developmental stages demonstrate one way in which the 
genetics of fruit development may help explain differences in date palm fruit variety.  
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GO Term Enrichment 
 
The GO term enrichment analysis demonstrated differences in output from the Wald vs. LRT 
designs. This is to be expected, as the time-series experiment a) produced a greater number of 
differentially expressed genes and b) showed difference in expression among all time periods, 
not just in reference to Day 45. 
 
GO-term-enrichment analysis also demonstrated further expression differences among the 5 
varieties. In fact, the top 10 GO terms for the varieties appear fairly dissimilar. The list of "top 
10 top 10s" (Table 5) shows that the most significantly enriched GO terms are quite different 
among the different varieties. That is, only one term (the very general "single organism cellular 
process") occurs in the top 10 lists of all five varieties. Three terms, including two involving 
nitrogen, occur in only 3 varieties' top 10 lists. The remaining "common" terms each occur in 
only 2 varieties' top 10 lists.  
 
However, more comprehensive lists of enriched GO terms for the different varieties show 
greater similarity. In the list of most common terms among all varieties' top-50 lists (Table 6), all 
terms occur at least 4 times. This demonstrates that while the very most significant GO terms 
for each variety may differ, the varieties are more similarly enriched in GO terms in a broader 
sense. These differing top terms may be those most important in producing the different fruit 
traits found among the varieties. The similarity in the broader list of terms likely reflects the 
fact that these are the same general developmental processes in the same species.  
 
The lists of enriched GO terms consist largely of terms that would be expected to be important 
in developing fruit tissue: those related to cell division; those related specifically to fruit-tissue 
development, such as acid levels; and general terms for organismal processes. A reading of the 
top 10 lists for individual varieties, as well as the lists of most common terms among the 
varieties ("top top-10s" and "top top-50s") characterizes what types of terms appear. The 
enriched terms tend to belong to three main groups: 
 

• General Terms: Very broad terms — like "single-organism cellular process" and "single-
organism biosynthetic process" — appear frequently, particularly in the collections of 
the most common terms among all varieties' lists. These terms do not provide much 
valuable information, other than the trivial observation that this is a single organism, 
but neither do they contradict what might be expected in a developing fruit. 
 

• Cell Division/Growth: Many of the enriched terms relate to cell division and growth, 
particularly in fruit development. This would be expected as development of the date 
palm fruit tissue would clearly involve cell division and growth. Terms involving 
nitrogen, such as "organonitrogen compound metabolic process," make sense as 
nitrogen is known to play an important role in cell division in young fruit tissue (Yara, 
"Role of Nitrogen").  
 
Terms involving cyclin-dependent protein kinases also appear multiple times, for 
example "regulation of cyclin-dependent protein serine/threonine kinase activity." 
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These types of kinases have been shown to play a role in the cell cycle, and have been 
associated with dividing tissues in developing fruit (Joubes et al., 2001). Finally, many 
terms involved with DNA replication during the cell cycle appear, such as "DNA 
packaging," "chromatin assembly or disassembly," and "nucleosome assembly." 
 

• Fruit Development: In addition to some of the cell-cycle-related terms above, several 
other frequently appearing GO terms relate to fruit development. Changes in proton 
transport and associated changes in acidity have been shown to play a role in ripening in 
many fruits (Terrier et al., 2001). This helps explain why terms like "ATP hydrolysis 
coupled proton transport" and its parent term "Energy coupled proton transmembrane 
transport, against electrochemical gradient" appear in the GO term lists.  

 
Above, a hypothesis was also made linking the "non-overlapping" ChiChi GO terms, in reference 
to Khalas, to at least one trait found for ChiChi fruit. The non-overlapping GO terms for ChiChi 
were found to be strongly related to protein synthesis and tissue synthesis in general. This was 
linked to the greater weight found in ChiChi fruit by Al-Abdoulhadi et al. (2011).  
 
It must be admitted that this hypothesis is very speculative, and that it is difficult to draw a 
straight line from the non-overlapping GO terms found for ChiChi to these specific differential 
varietal traits. In fact, the difference in weight reported for the fruit varieties may not be large 
enough that it would explain the difference in expression of protein-synthesis genes. That is, 
the GO-term differences and trait differences may not necessarily be linked, though the 
hypothesis is suggestive and could point to further avenues for research. 
 
In general, it may be difficult to align GO terms with specific fruit traits, even when those traits 
can be identified (Flowers J, personal communication, 2016). Therefore, the PI for the original 
RNA-seq experiment for this project suggested an alternative method to link differential 
expression to varietal fruit traits, by searching for differential expression among genes related 
to a pathway involved in fruit color. A proposed outline for this additional/supplemental 
experiment is included in "Next Steps," below.  
 
Significance 
 
The types of GO terms found suggest that the patterning and differential expression analyzed in 
this project do indeed refer to the genes important in date palm fruit development. This is 
important, because the goal of this analysis was to increase knowledge of the genetic basis for 
the developmental differences of date palm fruit varieties that are characterized by different 
traits. Ultimately, this analysis could add needed information on the gene-expression basis for 
different varietal traits in an important food crop, one that faces ongoing cultivation challenges. 
 
Next Steps/Future Research 
 
This analysis suggests several additional examinations and refinements. Differential expression 
and clustering might be done for individual time points against other time points. This could be 
done, for example, for times 120-135 in Khalas, to find if they form one or two umbrella 
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developmental stages, or by comparing times in ChiChi excluding 135 to find if any significant 
changes occur in those earlier time periods. DESeq2's "Contrasts" workflow could be used to 
investigate these questions, as it allows for simultaneous comparisons among three different 
factor levels. "Contrasts" might also be used to investigate differences among sets of three 
varieties, as an alternative method of finding those differentially expressed genes that do not 
overlap between varieties (in place of using setdiff on the results from each variety).  
 
The observation that the varieties with lower numbers of time replicates appeared to cluster 
more "neatly" could be further investigated by running the analysis on only 2 replicates per 
time point for all varieties. GO term enrichment could be analyzed in a more granular fashion 
against the different clustering patterns seen in the varieties.  
 
Proposed workflow for gene-color differential expression analysis 
 
Based on PI feedback, an additional or supplemental differential expression analysis could be 
performed to identify genes related to a specific fruit trait: color. The lab that produced this 
RNA-seq analysis has discovered a link between alleles in the flavonoid/anthocyanin pathway 
and color in date palm, responsible for producing yellow and red varieties (Hazzouri et al., 
2015)(Flowers, personal communication, 2016). The proposed new analysis would identify the 
genes in the date palm associated with the key enzymes in this pathway, then look for 
differential expression of those genes between the yellow-colored (Kenezi, possibly Khalas) and 
red-colored varieties (all others). Here are the proposed steps and associated methods in such 
an analysis, which may be performed in the future: 
 
Proposed fruit-color differential expression analysis work-flow 

• Find differentially expressed genes for Kenezi variety vs. other, red varieties 
o Do one-factor differential expression analysis (variety as factor) of all samples 
o Use Kenezi as reference level 
o Produce differentially expressed gene list 

•  Get date palm gene list for flavonoid/anthocyanin pathway 
o  Find genes for key enzymes in apple flavenoid/anthocyanin pathway in Espley et 

al. (2007) 
o  Identify date palm homologs for those genes using date palm flavenoid 

biosynthesis map (KEGG, "Flavanoid biosynthesis") 
o Match the NCBI gene IDs thus found to the gene-list ids from differential 

expression analysis (using Perl or BASH scripting) 
• Print list of differentially expressed genes associated with fruit color via the 

flavonoid/anthocyanin pathway 
• Potentially: Perform GO-term analysis on those genes 

 
Additional PI Feedback 
 
Finally, based on feedback from the principal investigator, the findings in this report could be 
used to shape further analysis of the date palm fruit RNA-seq data obtained in the original 
experiment. 
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Appendices 
 
DIFFERENTIAL EXPRESSION/CLUSTERING CODE 
(Clustering is performed in DESeq2 differential expression functions) 
(Normalization is included in DESeq2 code) 
 
Appendix 1. R Prep Steps: Prep_Steps_Final.R 
 
#This script takes performs the necessary preparatory steps to run the DESeq2 
#R scripts for this project: installing packages, reading in files, and setting up factors. 
 
#Intalling necessary Packages 
 
#bioconductor: for necessary bioconductor packages (DESeq2, GOstats) 
source("https://bioconductor.org/biocLite.R") 
biocLite() 
 
#DESeq2: for differential expression, clustering, visualization 
biocLite("DESeq2") 
library(DESeq2) 
 
#GOstats, GSEABase, AnnotationForge: for GO-enrichment analyses 
biocLite("GOstats"): 
  library(GOstats) 
library(cluster)  
 
biocLite("GSEABase") 
library(GSEABase) 
 
biocLite("AnnotationForge") 
library(AnnotationForge) 
 
#Pheatmap: For heatmap visualizations 
install.packages("pheatmap") 
library(pheatmap) 
library("RColorBrewer") 
 
#xlsx: to print files to Excel 
install.packages("xlsx") 
library(xlsx) 
 
############### 
 
#Load data 
#load full Date palm count matrix from 5-12-16 pipeline run 
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countData<-as.matrix(read.csv("count.table_full-pipeline-5-12-16.txt",sep="\t",row.names=1)) 
 
#Split column data 
#get sample names (which contain exp design info: sample variety and time) 
expdesign=colnames(countData) 
expdesign[55] #-->this is where Nebeit_Seif starts 
#get two parts: second part is for Nebeit_Seif, which contains internal "_" in name 
expdesign_pt1=colnames(countData[,1:54]) 
expdesign_pt2=colnames(countData[,55:ncol(countData)]) 
 
#split to get levesl and factors 
 
#for part 1 
#examine result on line one 
strsplit(expdesign[1],"_") 
 
unlist(strsplit(expdesign_pt1,"_"))->dplevels_pt1 
matrix(dplevels_pt1,ncol=5,byrow=T)->dpfactors_pt1 
 
#for part 2 
#examine result on line one 
strsplit(expdesign[55],"_") 
 
unlist(strsplit(expdesign_pt2,"_"))->dplevels_pt2 
matrix(dplevels_pt2,ncol=6,byrow=T)->dpfactors_pt2 
#paste Nebeit Seif name together 
dpfactors_pt2_paste<-(cbind(dpfactors_pt2[,1:2], 
                            paste0(dpfactors_pt2[,3],dpfactors_pt2[,4]), 
                            dpfactors_pt2[,5:6])) 
 
#pate two parts of factors together 
dpfactors_all<-rbind(dpfactors_pt1,dpfactors_pt2_paste) 
 
#set as factors 
var_fact_all<-as.factor(dpfactors_all[,3]) 
time_fact_all<-as.factor(dpfactors_all[,4]) 
 
#set factors separated 
var_fact_pt1<-as.factor(dpfactors_pt1[,3]) 
time_fact_pt1<-as.factor(dpfactors_pt1[,4]) 
var_fact_pt2<-as.factor(dpfactors_pt1[,3]) 
time_fact_pt2<-as.factor(dpfactors_pt1[,4]) 
 
#get shortened colnames (remove "Sample_sample") for countData, 
#assign to new countData_shortCols object 
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shortCols<-paste0(dpfactors_all[,3],"_",dpfactors_all[,4],"_",dpfactors_all[,5]) 
countData_shortCols<-countData 
colnames(countData_shortCols)<-shortCols 
 
###END SCRIPT##### 
 
Appendix 2. R Wald DESeq2 Function: "DESeq_OneVar_Function_Final.R" 
 
#This script defines a function to run DESeq2 differential expression analysis 
#on a variety in terms of time using the Wald hypothesis test. 
#It then conducts clustering of the variety by time and creates 
#clustering dendrogram, silhouette plots, heat maps for genes, 
#and heat maps for sample-to-sample distances. 
#It can be run as a mutliple-factor experiment on both variety and time (MF=True). 
 
#define DESeq One Sample Function 
deseq_one<-function(countData,r1,r2,var_name,variety_v,time_v,MF=FALSE) { 
   
  #get sample count data subset for variety from args 
  countData_Var<-countData[,r1:r2] 
   
  #get subset of factors for variety 
  variety_v=variety_v[r1:r2] 
  time_v=time_v[r1:r2] 
   
  #define column data and set row names 
  colData_Var<-data.frame(variety_v,time_v)  
  rownames(colData_Var)<-colnames(countData_Var) 
   
  #test if col data rownames match count data col names 
  if(!all(rownames(colData_Var) == colnames(countData_Var))) { 
    #if not, exit function with error 
    return("Error: Col data row names do not match count matrix column names") 
  } 
   
   
  ################# 
  #DESeq data set object 
   
  #Construct DESeqDataSet for Variety sample in terms of time 
  dds_Var <- DESeqDataSetFromMatrix(countData = countData_Var, 
                                    colData = colData_Var, 
                                    design = ~time_v) 
   
  dds_Var 
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  #set default text size for single-factor experiment 
  text_size=1 
   
  #Run multi-factor design if MF true (for all-variety run) 
  if(MF) { 
    design(dds_Var)<-formula(~variety_v + time_v) 
    text_size=0.5 #decrease text size for multifactor dendrogram 
  } 
   
  #pre-filtering low-count reads 
  dds_Var <- dds_Var[ rowSums(counts(dds_Var)) > 1, ] 
   
  #set reference levels 
  dds_Var$time_v<-factor(dds_Var$time_v,levels=c("45","75","105","120","135")) 
   
  ############## 
  #DIFFERENTIAL EXPRESSION 
   
  #Run differential expression test for variety 
  dds_Var <- DESeq(dds_Var) 
   
  #get results of DE test for variety 
  res_Var <- results(dds_Var, alpha=0.05) 
   
  #Preview summary of results 
  summary(res_Var) 
   
  #get # of adjusted p-values less than 0.05 
  sum(res_Var$padj < 0.05, na.rm=TRUE) 
  #print number to text file 
  pval_df<-data.frame() 
  pval_df[1,1]<-("Variety:") 
  pval_df[1,2]<-(var_name) 
  pval_df[2,1]<-("No. genes with DE padj<0.05:") 
  pval_df[2,2]<-(sum(res_Var$padj < 0.05, na.rm=TRUE)) 
  
write.table(pval_df,file=paste0("padj#_",var_name,".txt"),col.names=FALSE,row.names=FALSE,
quote=FALSE) 
   
  ############### 
  #Rlog NORMALIZATION for clustering 
   
  #Get rlog transformation of dds object (rld) 
  rld_Var <- rlog(dds_Var) 
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  #get transformed count values 
  rld_Var.counts<-assay(rld_Var) 
   
  ############### 
   
  #CLUSTERING 
   
  #get distances and plot hcluster using rld 
  dists_Var <-dist(t(rld_Var.counts)) 
  hclusts_Var <-hclust(dists_Var) 
  pdf(paste0("hclust_",var_name,".pdf")) 
  plot(hclusts_Var,cex=text_size,main=paste0(var_name," Cluster 
Dendrogram"),xlab=paste0("dists_",var_name)) 
  dev.off() 
 
  ############################ 
  #Check silhouette 
   
  #split in # groups on basis of dendrogram --> adjust number for variety as needed 
  groups_Var<-cutree(hclusts_Var, k=4) 
   
  #get names of groups --> adjust number for specific variety as needed 
  names(which(groups_Var==1))->group1_Var 
  names(which(groups_Var==2))->group2_Var 
  names(which(groups_Var==3))->group3_Var 
  #names(which(groups_Var==4))->group4_Var 
  #names(which(groups_Var==5))->group5_Var 
   
  #print group names --> adjust number for specific variety as needed 
  
write.table(as.data.frame(group1_Var),file=paste0("group1names_",var_name,".txt"),col.name
s=FALSE,row.names=FALSE,quote=FALSE) 
  
write.table(as.data.frame(group2_Var),file=paste0("group2names_",var_name,".txt"),col.name
s=FALSE,row.names=FALSE,quote=FALSE) 
  
write.table(as.data.frame(group3_Var),file=paste0("group3names_",var_name,".txt"),col.name
s=FALSE,row.names=FALSE,quote=FALSE) 
  
write.table(as.data.frame(group4_Var),file=paste0("group4names_",var_name,".txt"),col.name
s=FALSE,row.names=FALSE,quote=FALSE) 
  
#write.table(as.data.frame(group5_Var),file=paste0("group5names_",var_name,".txt"),col.nam
es=FALSE,row.names=FALSE,quote=FALSE) 
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  #get silouhette of k grouping 
  silhouette(groups_Var,dist=dists_Var)->Var_sil 
   
  #print silhouette to PDF 
  pdf(paste0("sil_",var_name,".pdf")) 
  plot(Var_sil, main=paste0(var_name, " Silhouette")) 
  dev.off() 
 
  ########################## 
   
  #Other visualizations of the data 
   
  #HeatMaps 
   
  #Get heatmap of count matrix of differentially expressed genes 
  select<-order(rowMeans(counts(dds_Var,normalized=TRUE)), 
                decreasing=TRUE)[1:20] 
   
  #get col data as dataframe 
  df<-as.data.frame(colData(dds_Var)[,c("variety_v","time_v")]) 
   
  #heatmap using rld transform 
  pdf(paste0("gene_heatmap_rld_",var_name,".pdf")) 
  pheatmap(assay(rld_Var)[select,],cluster_rows=FALSE,show_rownames=FALSE, 
           cluster_cols=FALSE,annotation_col=df,main=paste0(var_name," Gene Heatmap (RLD)"))  
  dev.off() 
   
  #heatmap using varianceStabilizingTransformation 
  vsd_Var <- varianceStabilizingTransformation(dds_Var, blind=FALSE) 
  pdf(paste0("gene_heatmap_vsd_",var_name,".pdf")) 
  pheatmap(assay(vsd_Var)[select,],cluster_rows=FALSE,show_rownames=FALSE, 
           cluster_cols=FALSE,annotation_col=df, main=paste0(var_name,"Gene Heatmap (VSD)")) 
  dev.off() 
  ### 
   
  #Heatmap of sample-to-sample distance 
   
  #get distances for Variety samples 
  sampleDists_Var <- dist(t(assay(rld_Var))) 
   
  #make map 
  sampleDistMatrix_Var <- as.matrix(sampleDists_Var) 
  rownames(sampleDistMatrix_Var)<-paste(rld_Var$variety_v,rld_Var$time_v,sep="-") 
  colnames(sampleDistMatrix_Var)<-NULL 
  colors<-colorRampPalette(rev(brewer.pal(9,"Blues")))(255) 
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  #print map to PDF 
  pdf(paste0("sampletimes_heatmap_",var_name,".pdf")) 
  pheatmap(sampleDistMatrix_Var, 
           clustering_distance_rows=sampleDists_Var, 
           clustering_distance_cols=sampleDists_Var, 
           col=colors,main=paste0(var_name," Sample Heatmap")) 
  dev.off() 
 
    ##GETTING GENE LIST#### 
   
  #GET DIFFERENTIALLY EXPRESSED GENES 
   
  #remove nas 
  res_Var.nona <- res_Var[complete.cases(res_Var),] 
  #get variety genes with padj < 0.05 
  gene.list.Var<-row.names(res_Var.nona[res_Var.nona$padj<0.05,]) 
   
  #printing out 
  head(as.data.frame(gene.list.Var)) 
  
write.table(as.data.frame(gene.list.Var),file=paste0("gene.list_",var_name,".txt"),col.names=FA
LSE,row.names=FALSE,quote=FALSE) 
   
  ########### 
   
  #Get expression matrix for DE genes (gene.list.**) 
  expmatrix.gene.list.Var<-countData_Var[gene.list.Var,] 
   
} #END OF FUNCTION### 
 
#function calls 
#on ChiChi 
deseq_one(countData_shortCols,1,13,"Chi",var_fact_all,time_fact_all) 
#on Kenezi (14:28) 
deseq_one(countData_shortCols,14,28,"Kenezi",var_fact_all,time_fact_all) 
#on Khalas 
deseq_one(countData_shortCols,29,44,"Khalas",var_fact_all,time_fact_all) 
#on Lulu 
deseq_one(countData_shortCols,45,54,"Lulu",var_fact_all,time_fact_all) 
#on NebeitSeif 
deseq_one(countData_shortCols,55,64,"NebeitSeif",var_fact_all,time_fact_all) 
 
#function call on all samples, times 
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deseq_one(countData_shortCols,1,ncol(countData_shortCols),"All_Vars",var_fact_all,time_fact
_all,MF=TRUE) 
 
###END SCRIPT##### 
 
Appendix 3. R LRT DESeq2 Function: "DESeq_OneVar_LRT_Function_Final.R" 
 
#This script defines a function to run DESeq2 differential expression analysis 
#on a variety in terms of time using the LRT hypothesis test (for time series). 
#It then conducts clustering of the variety by time and creates 
#clustering dendrograms as well and heat maps for sample-to-sample distances. 
#It also conducts clustering by gene, creating gene cluster dendrogram, 
#silhouette plots for gene cluster groups, box plots, and gene expression 
#heat maps. 
#It can be run as a mutliple-factor experiment on both variety and time (MF=True). 
 
#define DESeq One Sample LRT Function 
deseq_one_lrt<-function(countData,r1,r2,var_name,variety_v,time_v,MF=FALSE) { 
 
  var = var_name 
   
  #get sample count data subset for variety 
  countData_Var<-countData[,r1:r2] 
   
  #get subset of factors for variety 
  variety_v=variety_v[r1:r2] 
  time_v=time_v[r1:r2] 
   
  #define column data and set row names 
  colData_Var<-data.frame(variety_v,time_v)  
  rownames(colData_Var)<-colnames(countData_Var) 
   
  #test if col data rownames match count data col names 
  if(!all(rownames(colData_Var) == colnames(countData_Var))) { 
    #if not, exit function with error 
    return("Error: Col data row names do not match count matrix column names") 
  } 
   
   
  ################# 
  #DESeq data set object 
   
  #Construct DESeqDataSet for Variety sample in terms of time 
  dds_Var <- DESeqDataSetFromMatrix(countData = countData_Var, 
                                    colData = colData_Var, 
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                                    design = ~time_v) 
   
  dds_Var 
   
  #set text size to default for non-MF test 
  text_size=1 
   
  #Run multi-factor design if MF true (for all-variety run) 
  if(MF) { 
    design(dds_Var)<-formula(~variety_v + time_v) 
    text_size=0.5 #set smaller text size for MF dendrogram 
  } 
   
  #pre-filtering low-count reads 
  dds_Var <- dds_Var[ rowSums(counts(dds_Var)) > 1, ] 
   
  #set reference levels 
  dds_Var$time_v<-factor(dds_Var$time_v,levels=c("45","75","105","120","135")) 
   
 
  ############## 
  #DIFFERENTIAL EXPRESSION 
   
  #TIME SERIES experimental design: LRT  
   
  #Differential expression test 
   
  #LRT option for multifactor 
  if(MF) { 
    dds_Var <- DESeq(dds_Var,test="LRT",reduced=~variety_v) 
  } else { 
    dds_Var <- DESeq(dds_Var,test="LRT",reduced=~1)   
  } 
   
  #get results of DE test for variety 
  res_Var <- results(dds_Var, alpha=0.05) 
   
  #get # of adjusted p-values less than 0.05 
  sum(res_Var$padj < 0.05, na.rm=TRUE) 
  #print number to text file 
  pval_df<-data.frame() 
  pval_df[1,1]<-("Variety:") 
  pval_df[1,2]<-(var_name) 
  pval_df[2,1]<-("No. genes with DE padj<0.05:") 
  pval_df[2,2]<-(sum(res_Var$padj < 0.05, na.rm=TRUE)) 
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write.table(pval_df,file=paste0("padj#_",var_name,"_LRT.txt"),col.names=FALSE,row.names=FA
LSE,quote=FALSE) 
   
  ############### 
  #NORMALIZATION for clustering 
   
  #Get rlog transformation of dds object (rld)  
  rld_Var <- rlog(dds_Var) 
 
  #get transformed count values 
  rld_Var.counts<-assay(rld_Var) 
   
  ############### 
   
  #CLUSTERING 
   
  #clustering of SAMPLES 
  #get distances and plot hcluster using rld 
  dists_Var <-dist(t(rld_Var.counts)) 
  pdf(paste0("hclust_",var_name,"_LRT.pdf")) 
  plot(hclust(dists_Var),cex=text_size) 
  dev.off() 
   
  #clustering of GENES 
  #get distances for genes, and plot hcluster 
  dists_genes_Var <-dist(rld_Var.counts) 
  hclusts_genes_Var<-hclust(dists_genes_Var) 
  pdf(paste0("hclust_genes_",var_name,"_LRT.pdf")) 
  plot(hclusts_genes_Var,main=paste0(var_name," Gene Cluster")) 
  dev.off() 
   
  #get silhouette for gene clusters 
 
  #split gene cluster in # groups on basis of dendrogram; set number for variety 
  groups_genes_Var<-cutree(hclusts_genes_Var, k=2) 
   
  #get names of groups, set number for variety 
  names(which(groups_genes_Var==1))->group1_genes_Var 
  names(which(groups_genes_Var==2))->group2_genes_Var 
  #names(which(groups_genes_Var==3))->group3_genes_Var 
  #names(which(groups_genes_Var==4))->group4_genes_Var 
  #names(which(groups_genes_Var==5))->group5_genes_Var 
  #names(which(groups_genes_Var==6))->group6_genes_Var 
  #names(which(groups_genes_Var==7))->group7_genes_Var 
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  #print group names; set number for variety 
  
write.table(as.data.frame(group1_genes_Var),file=paste0("group1names_genes",var_name,".tx
t"),col.names=FALSE,row.names=FALSE,quote=FALSE) 
  
write.table(as.data.frame(group2_genes_Var),file=paste0("group2names_genes",var_name,".tx
t"),col.names=FALSE,row.names=FALSE,quote=FALSE) 
  
#write.table(as.data.frame(group3_genes_Var),file=paste0("group3names_genes",var_name,".
txt"),col.names=FALSE,row.names=FALSE,quote=FALSE) 
  
#write.table(as.data.frame(group4_genes_Var),file=paste0("group4names_genes",var_name,".
txt"),col.names=FALSE,row.names=FALSE,quote=FALSE) 
  
#write.table(as.data.frame(group5_genes_Var),file=paste0("group5names_genes",var_name,".
txt"),col.names=FALSE,row.names=FALSE,quote=FALSE) 
  
#write.table(as.data.frame(group6_genes_Var),file=paste0("group6names_genes",var_name,".
txt"),col.names=FALSE,row.names=FALSE,quote=FALSE) 
  
#write.table(as.data.frame(group7_genes_Var),file=paste0("group7names_genes",var_name,".
txt"),col.names=FALSE,row.names=FALSE,quote=FALSE) 
     
  #get silouhette 
  silhouette(groups_genes_Var,dist=dists_genes_Var)->Var_genes_sil 
   
  #print silhouette to PDF 
  pdf(paste0("sil_genes_",var_name,".pdf")) 
  plot(Var_genes_sil,main=paste0(var_name," Gene Silhouette")) 
  dev.off() 
   
  #return() 
   
  ######BELOW: BOXPLOT FOR VARIETY GENE GRPS### 
 
  #plotting AVERAGES: get average gene vals across time factor for gene groups, plot log2 
  #using count table 
  #set number according to variety 
   
  #grp1 
  avgs_grp1_genes_Var<-apply(countData_Var[group1_genes_Var,],1,tapply,time_v,mean) 
  pdf(paste0("box_grp1genes_",var_name,"_LRT.pdf")) 
  boxplot(t(log2(avgs_grp1_genes_Var)),main=paste0(var_name,": Group 1"), 
ylab="log2(mean(expression))",xlab="Time Factor") #THIS WORKS 
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  dev.off() 
   
  #grp 2 
  avgs_grp2_genes_Var<-apply(countData_Var[group2_genes_Var,],1,tapply,time_v,mean) 
  pdf(paste0("box_grp2genes_",var_name,"_LRT.pdf")) 
  boxplot(t(log2(avgs_grp2_genes_Var)),main=paste0(var_name,": Group 2"), 
ylab="log2(mean(expression))",xlab="Time") #THIS WORKS 
  dev.off() 
   
  #grp 3 
  #avgs_grp3_genes_Var<-apply(countData_Var[group3_genes_Var,],1,tapply,time_v,mean) 
  #pdf(paste0("box_grp3genes_",var_name,"_LRT.pdf")) 
  #boxplot(t(log2(avgs_grp3_genes_Var)),main=paste0(var_name,": Group 3"), 
ylab="log2(mean(expression))",xlab="Time") #THIS WORKS 
  #dev.off() 
   
  #grp 4 
  #avgs_grp4_genes_Var<-apply(countData_Var[group4_genes_Var,],1,tapply,time_v,mean) 
  #pdf(paste0("box_grp4genes_",var_name,"_LRT.pdf")) 
  #boxplot(t(log2(avgs_grp4_genes_Var)),main=paste0(var_name,": Group 4"), 
ylab="log2(mean(expression))",xlab="Time") #THIS WORKS 
  #dev.off() 
 
 
  #######END CHI GENE CLUST BOX PLOT#### 
   
   
  ########################## 
   
  #Other visualizations of the data 
   
  ######### 
  #HeatMaps 
   
  #load package 
  library("pheatmap") 
   
  #Get heatmap of count matrix of differentially expressed genes 
  select<-order(rowMeans(counts(dds_Var,normalized=TRUE)), 
                decreasing=TRUE)[1:20] 
   
  #get col data as dataframe 
  df<-as.data.frame(colData(dds_Var)[,c("variety_v","time_v")]) 
   
  #heatmap using rld transform 
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  pdf(paste0("gene_heatmap_rld_",var_name,"_LRT.pdf")) 
  pheatmap(assay(rld_Var)[select,],cluster_rows=FALSE,show_rownames=FALSE, 
           cluster_cols=FALSE,annotation_col=df)  
  dev.off() 
   
  #heatmap using varianceStabilizingTransformation 
  vsd_Var <- varianceStabilizingTransformation(dds_Var, blind=FALSE) 
  pdf(paste0("gene_heatmap_vsd_",var_name,"_LRT.pdf")) 
  pheatmap(assay(vsd_Var)[select,],cluster_rows=FALSE,show_rownames=FALSE, 
           cluster_cols=FALSE,annotation_col=df) 
  dev.off() 
  ### 
   
  #Heatmap of sample-to-sample distance 
   
  #get distances for Chi samples 
  sampleDists_Var <- dist(t(assay(rld_Var))) 
   
  #make map 
  sampleDistMatrix_Var <- as.matrix(sampleDists_Var) 
  rownames(sampleDistMatrix_Var)<-paste(rld_Var$variety_v,rld_Var$time_v,sep="-") 
  colnames(sampleDistMatrix_Var)<-NULL 
  colors<-colorRampPalette(rev(brewer.pal(9,"Blues")))(255) 
   
  #print map to PDF 
  pdf(paste0("sampletimes_heatmap_",var_name,"_LRT.pdf")) 
  pheatmap(sampleDistMatrix_Var, 
           clustering_distance_rows=sampleDists_Var, 
           clustering_distance_cols=sampleDists_Var, 
           col=colors) 
  dev.off() 
   
  ################ 
   
  #GET DIFFERENTIALLY EXPRESSED GENES 
  #get differentially expressed genes 
  #Variety genes with padj < 0.05 
   
  #remove nas 
  res_Var.nona <- res_Var[complete.cases(res_Var),] 
  gene.list.Var<-row.names(res_Var.nona[res_Var.nona$padj<0.05,]) 
   
  #printing out 
  head(as.data.frame(gene.list.Var)) 
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write.table(as.data.frame(gene.list.Var),file=paste0("gene.list_",var_name,"_LRT.txt"),col.name
s=FALSE,row.names=FALSE,quote=FALSE) 
   
  ########### 
   
  #Get expression matrix for DE genes (gene.list.**) 
  expmatrix.gene.list.Var<-countData_Var[gene.list.Var,] 
   
   
  ############# 
   
} #END OF FUNCTION### 
 
#LRT function calls on varieties 
#on ChiChi 
deseq_one_lrt(countData_shortCols,1,13,"Chi",var_fact_all,time_fact_all) 
#on Kenezi (14:28) 
deseq_one_lrt(countData_shortCols,14,28,"Kenezi",var_fact_all,time_fact_all) 
#on Khalas 
deseq_one_lrt(countData_shortCols,29,44,"Khalas",var_fact_all,time_fact_all) 
#on Lulu 
deseq_one_lrt(countData_shortCols,45,54,"Lulu",var_fact_all,time_fact_all) 
#on NebeitSeif 
deseq_one_lrt(countData_shortCols,55,64,"NebeitSeif",var_fact_all,time_fact_all) 
 
 
#function call on all samples, times 
deseq_one_lrt(countData_shortCols,1,ncol(countData_shortCols),"All_Vars",var_fact_all,time_f
act_all,MF=TRUE) 
 
###END SCRIPT##### 
 
GO TERM ENRICHMENT SCRIPTS 
 
Appendix 4. BASH Gene-Protein Hasher: "gene_pt_hasher.pbs" 
 
#!/bin/bash 
 
#PBS -l nodes=1:ppn=8,walltime=12:00:00,mem=6gb 
#PBS -N Gene_Pt_Hasher 
#PBS -M mid224@nyu.edu 
#PBS -m a 
#PBS -j eo 
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#this script takes differentially expresseed gene list and creates  
#gene-to-protein list from date palm gff 
 
cd ${PBS_O_WORKDIR} 
 
#loop through gene list to get rnas that are children to gene id 
while read -r line 
do 
        gene="$line" 
        echo "gene = $gene" 
  
 #get rnas that list gene id as parent, write to temp file 
        rna="$(grep -i "Parent=${gene};" DPRefs/ref_DPV01_scaffolds.gff3 | grep -o '\brna\w*')" 
        echo "$rna" > rna_temp.txt 
 
 #read through temp file and add each listed rna, with parent gene id to rna list 
        while read -r rline 
        do 
                echo -e "${rline}\t${gene}" >> rna_list_tab.txt 
        done < "rna_temp.txt" 
 
done < "GeneLists/full_dp_genelist.txt" 
 
#now loop through gene/rna list to get protein ids, print gene-pt hash 
while IFS=$'\t' read rna gene;do 
 
        echo "rna = $rna gene = $gene" 
 
        #get protein id 
 
        #below command takes all protein id matches, places in temp file 
        ptid="$(grep -i "Parent=${rna};" DPRefs/ref_DPV01_scaffolds.gff3 | grep 'ID=cds' | grep -o 
'\protein_id=.*$')" 
        echo "ptid = $ptid" 
 
        #place ptid in temp file 
        echo "$ptid" > ptid_temp.txt 
 
        #read through ptid_temp.txt and place each protein id, with associated gene id, in file 
        while read -r pt_exp 
        do 
                #trim 'protein_id=' from pt_exp 
                pt_exp="${pt_exp#'protein_id='}" 
                pt_exp=${pt_exp%;*} #remove any trailing ';' and associated info 
                #print to tab-delimted file 
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                #echo -e "${rna}\t${gene}\t${pt_exp}" >> ptid_list_tab.txt #rnas not needed in print 
                echo -e "${gene}\t${pt_exp}" >> ptid_list_tab.txt 
        done < "ptid_temp.txt" 
 
done < "rna_list_tab.txt" 
 
#remove duplicates 
sort ptid_list_tab.txt | uniq > gene_pt_hash_notail.txt 
 
Appendix 5. BASH FASTA Protein Splitter: fasta100_full.pbs 
 
#!/bin/bash 
 
#PBS -l nodes=1:ppn=12,walltime=12:00:00,mem=8gb 
#PBS -N Fasta100_Full 
#PBS -M mid224@nyu.edu 
#PBS -m a 
#PBS -j eo 
 
#this script steps through fasta ids of datepalm protein fasta 
#to make 100 fasta-sequence files 
#It then calls PBS array to run interproscan on each fasta sequence file 
 
cd ${PBS_O_WORKDIR} 
 
#get all fasta ids 
#search for id symbol (>) and print out first word of line into file 
grep -i ">" protein.fa  | awk '{print $1}' > fastaids_all.txt  
 
#get number of ids in list 
length="$(wc -l < fastaids_all.txt)" 
 
#set to split into n groups 
groups=100 
#create n groups by setting steps to: # fasta ids/n 
step=$((${length}/${groups})) 
 
#create directory for split FASTA files 
mkdir "files_div_${groups}" 
#create directory for interproscan output 
mkdir "files_interpro_div_${groups}" 
 
#create fasta id list that goes by steps 
g=0 #set counter for number of groups 
#loop through fasta ids by step, print to file 
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for ((i=1;i<=$length;((i=i+${step})))); do 
        echo "i = $i" 
        sed -n ${i}p fastaids_all.txt >> fastaids_all_steps.txt 
        ((g++)) 
        if [ $g -eq $groups ] #quit when reach n groups 
        then 
                break 
        fi 
done 
 
#get group sequences by stepped fasta ids 
 
#initialize ID1 to first line of step fasta 
ID1="$(sed -n 1p fastaids_all_steps.txt)" 
 
#remove first line of step fasta and add eof line 
sed '1d' fastaids_all_steps.txt > fastaids_all_stepsmod.txt 
#add eof line to end of step fasta mod 
echo "ENDOFFILE" >> fastaids_all_stepsmod.txt 
 
#set counter for number of files 
n=0 
#read through protein fasta by step ids, write sequences to n files 
while read -r line 
do 
        ((n++)) #count group number 
        ID2="$line" 
 
        #read seq from ID1 to ID2 into nth fa file 
        sed -n "/$ID1/,/$ID2/p" protein_dp_full.fa >> "files_div_${groups}/protein_pt${n}.fa" 
        #remove trailing ID2 line (no sequences follow it) 
        sed -i '$d' "files_div_${groups}/protein_pt${n}.fa" 
 
        #set ID1 to ID2 for next iteration 
        ID1="$ID2" 
 
done < "fastaids_all_stepsmod.txt" 
 
 
#interpro pbs array call on split fastas 
qsub -t 1-${groups} interpro_arr.pbs 
 
Appendix 6. BASH InterProScan Array Script: interpro_arr.pbs 
 
#!/bin/bash 
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#PBS -l nodes=1:ppn=12,walltime=24:00:00,mem=12gb 
#PBS -N Interpro_Arr 
#PBS -M mid224@nyu.edu 
#PBS -m a 
#PBS -j eo 
 
# This script calls PBS array job to run interproscan on n groups 
 
cd ${PBS_O_WORKDIR} 
 
#set number of fasta files 
group=100 
 
#interproscan calls 
#load module 
module load interproscan-5.4-47.0 
 
#call interpro job for nth fasta file in nth instance of array job 
#include go terms in interpro analysis 
#save files to appropriate directory 
/share/apps/interproscan/interproscan-5.4-47.0/interproscan.sh -i 
files_div_${group}/protein_pt${PBS_ARRAYID}.fa -goterms -d files_interpro_div_${group} -f tsv 
 
Appendix 7. BASH GOFrameData Object Writer: GO_Pt_writer_multi.pbs 
 
#!/bin/bash 
 
#PBS -l nodes=1:ppn=8,walltime=12:00:00,mem=6gb 
#PBS -N GO_Pt_Writer 
#PBS -M mid224@nyu.edu 
#PBS -m a 
#PBS -j eo 
 
#This script reads through interproscan output files in a directory, 
#and produces final csv file of GO term, ND, and gene name 
 
cd ${PBS_O_WORKDIR} 
 
#read through all interproscan .tsv files in directory 
#create list of protein ids and GO terms (piped) as ptid_GO.txt 
 
for f in protein_pt* 
do 
        echo "Processing $f" 
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        #get protein id and GO term columns and append to ptid_GO.txt list 
        #remove lines if no GO terms 
        cut -f 1,14 ${f} | grep '[^[:blank:]]' | awk 'NF >1' >> ptid_GO.txt 
 
done 
 
#expand piped GO term lines (GOterm|GOterm), save as ptid_GO_expand.txt 
while IFS=$'\t' read ptid GO; do 
 
        IFS='|' read -ra GOArr <<< "$GO" 
        for i in "${GOArr[@]}"; do 
                #echo "$i" 
                echo -e "${ptid}\t${i}" >> ptid_GO_expand.txt 
        done 
done < "ptid_GO.txt" 
 
#remove duplicates 
sort ptid_GO_expand.txt | uniq > ptid_GO_expand_d.txt 
 
#Now, match pt IDs to genes, write GOgenedata file(s) (for R reading) 
#Remove duplicate lines from that file 
 
while IFS=$'\t' read ptid GO; do 
 
 #get matching gene ids, print to temp file 
        gene="$(grep -i "$ptid" gene_pt_hash_notail.txt | cut -f 1)" 
        echo "$gene" > gene_temp.txt 
 
        #loop for proteins that match to multiple genes, print to GO data file 
        while read -r gene_exp 
        do 
                echo -e "${GO}\tND\t${gene_exp}" >> GOgenedata.txt 
        done < "gene_temp.txt" 
 
done < "ptid_GO_expand.txt" 
 
#remove duplicates 
sort GOgenedata.txt | uniq | grep '[^[:blank:]]' | awk 'NF >2'> GOgenedata_d.txt 
 
Appendix 8. BASH GO-Gene Matcher: genelist_GOcomp.sh 
 
#!/bin/bash 
 
#This script finds those gene ids in a list 
#that have GO terms, saves those to new file 
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#file for-loop 
#read through GOdata object, check if gene name there, print to new file if so 
for f in gene.list_* 
do 
       fbase=${f%.*} #remove '.txt' to get file base name 
 echo "File = $f and file_GO = ${fbase}_GO.txt" 
 
 while IFS=$'\t' read gene; do 
 
        #check if gene (only whole word -w) is present in GOdata object 
        #if so, print to GOgene list 
        if grep --quiet -w "$gene" GOgenedata_d_3rdrun.txt; then 
                echo $gene >> "${fbase}_GO.txt" 
        fi 
 
 done < "$f" 
 
done 
 
Appendix 9. R GO Term Enrichment Script: "GO_Function_Final.R" 
 
#This script defines a function to run the GOstats hypergeometric test 
#for GO-term enrichment. It also reads in the necessary goFrameData, gene list, and 
#universe files. It runs a loop that calls the GOstats function on each variety and 
#extracts top terms from those varieties. The script then uses table and sort to 
#calculate the most common terms among all varieties' concatenated top-10 and top 50-lists. 
 
 
#####GO_on FUNCTION STARTS######### 
#define function to run GO-term analysis on variant gene lists 
GO_on<-function(gsc,universe,variant_g,LRT=FALSE) { 
  #function takes in gsc object, universe and datepalm variant name 
   
  #read in variant's genes with GO terms 
  #gene GO lists of the form: gene.list_NebeitSeif_GO.txt 
   
  #if check for LRT=TRUE; change base name if reading in LRT gene lists 
  if (LRT) { 
    file_base=paste0("gene.list_",variant_g,"_LRT") 
  } else { 
    file_base=paste0("gene.list_",variant_g) 
  } 
 
  #read in gene list 
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  genes = read.csv(paste0(file_base,"_GO.txt"),sep="\t",header=FALSE) 
  genes<-levels(genes$V1) #->get gene names from levels of object factor 
   
  #set paramters for hyperG test 
  params <- GSEAGOHyperGParams(name="My Custom GSEA Var Params", 
                               geneSetCollection = gsc, 
                               geneIds = genes, 
                               universeGeneIds = universe, 
                               ontology = "BP", 
                               pvalueCutoff = 0.05, 
                               conditional = FALSE, 
                               testDirection = "over") 
   
  #run the hyper g test 
  Over <- hyperGTest(params) 
   
  #print top ten terms for var to Excel file 
  
write.xlsx(head(summary(Over),n=10L),file=paste0("GO10_",file_base,".xlsx"),col.names=TRUE,
row.names=TRUE) 
   
  #return summary object with data 
  return(summary(Over)) 
 
} #END GO_on FUNCTION######## 
 
########## 
 
#GET OVERALL GSC, UNIVERSE OBJECTS 
#read in goframeData object for use in all GO_on function runs 
#read in GO term list (GO terms, evidence, gene ids) for full genome 
goframeData <- read.csv("GOgenedata_d_3rdrun.txt", sep="\t",header=FALSE) 
colnames(goframeData)<-c("frame.go_id","frame.Evidence","frame.gene_id") 
 
#prepare GO to gene mappings 
goFrame=GOFrame(goframeData,organism="Phoenix dactylifera") 
goAllFrame=GOAllFrame(goFrame) 
 
#define gsc object # 
gsc <- GeneSetCollection(goAllFrame,setType = GOCollection()) 
 
#set universe as all genes with GO terms 
universe<-levels(goframeData$frame.gene_id) 
 
#make vector of variety base names 
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varieties<-c("Chi","Kenezi","Khalas","Lulu","NebeitSeif") 
 
####### 
#FUNCTION CALLS ON NON-lrt########## 
 
#initialize char vector to contain all vars' top 10s, all vars' terms 
#!re-initialize before every for-loop run! 
all_top10<-vector(mode="character") 
all_terms<-vector(mode="character") 
 
#loop through varieties and call GO function on them 
for (v in varieties) { 
  os<-GO_on(gsc, universe, v) 
  assign(paste0("GOsum_",v),os) 
   
  #in this loop also add top 10 terms for each to a vector, and for all terms 
  all_top10<-c(all_top10,os[1:10,7]) 
  all_terms<-c(all_terms,os[,7]) 
} 
 
all_top10 
head(all_terms) 
 
#find most common occurrences in all_top10, write to file 
GO10_All10<-head(sort(table(all_top10), decreasing = TRUE),n=10L) 
write.xlsx(GO10_All10,file="GO10_All10.xlsx",col.names=TRUE,row.names=TRUE) 
#find most common occurrences in all_terms, write to file 
GO10_AllTerms<-head(sort(table(all_terms), decreasing = TRUE),n=10L) 
write.xlsx(GO10_AllTerms,file="GO10_AllTerms.xlsx",col.names=TRUE,row.names=TRUE) 
 
##### 
#function call on All Vars 
GOsum_All_Vars<-GO_on(gsc, universe, "All_Vars") 
 
 
########### 
 
#FUNCTION CALLS ON LRT 
 
#initialize char vector to contain all vars' top 10s, all top 50s, all vars' terms 
#!!re-initialize before every for-loop run! 
all_top10_LRT<-vector(mode="character") 
all_top50_LRT<-vector(mode="character") 
all_terms_LRT<-vector(mode="character") 
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#loop through varieties and call GO function on them 
for (v in varieties) { 
  os<-GO_on(gsc, universe, v,TRUE) 
  assign(paste0("GOsum_LRT_",v),os) 
   
  #in this loop also add top 10, top 50 terms for each to a vector, and for all terms 
  all_top10_LRT<-c(all_top10_LRT,os[1:10,7]) 
  all_top50_LRT<-c(all_top50_LRT,os[1:50,7]) 
  all_terms_LRT<-c(all_terms_LRT,os[,7]) 
} 
 
 
#find 10 most common occurrences in all_top10_LRT; write to file 
GO10_All10_LRT<-head(sort(table(all_top10_LRT), decreasing = TRUE),n=10L) 
write.xlsx(GO10_All10_LRT,file="GO10_All10_LRT.xlsx",col.names=TRUE,row.names=TRUE) 
#find 10 most common occurrences in all_top50_LRT, write to file 
GO10_All50_LRT<-head(sort(table(all_top50_LRT), decreasing = TRUE),n=10L) 
write.xlsx(GO10_All50_LRT,file="GO10_All50_LRT.xlsx",col.names=TRUE,row.names=TRUE) 
#find 10 most common occurrences in all_terms_LRT, write to file 
GO10_AllTerms_LRT<-head(sort(table(all_terms_LRT), decreasing = TRUE),n=10L) 
write.xlsx(GO10_AllTerms_LRT,file="GO10_AllTerms_LRT.xlsx",col.names=TRUE,row.names=TR
UE) 
 
##### 
#LRT function call on All Vars 
GOsum_LRT_All_Vars<-GO_on(gsc, universe, "All_Vars",TRUE) 
 
####END SCRIPT### 
 
Appendix 10. R GO Gene Non-Overlap Script: "GO_GeneComps.R" 
 
#GO TERM GENE-COMPARISONS 
#This script checks what genes differ between varities, and runs GO-term-enrichment 
#on the different genes. 
#Uses LRT gene lists that have GO terms 
 
#define function to run GO-term analysis on variant gene lists 
GO_Comp<-function(gsc,universe,gene_comp_list,name_base) { 
  #function takes in gsc object, universe and compared-genes list 
   
  #set paramters for hyperG test 
  params <- GSEAGOHyperGParams(name="My Custom GSEA Var Params", 
                               geneSetCollection = gsc, 
                               geneIds = gene_comp_list, 
                               universeGeneIds = universe, 
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                               ontology = "BP", 
                               pvalueCutoff = 0.05, 
                               conditional = FALSE, 
                               testDirection = "over") 
   
  #run the hyper g test 
  Over <- hyperGTest(params) 
   
  #print top ten terms for var to Excel file 
  
write.xlsx(head(summary(Over),n=10L),file=paste0("GO10_",name_base,".xlsx"),col.names=TR
UE,row.names=TRUE) 
  #print just top 10 term column to text file 
  
write.table(head(summary(Over)$GOBPID,n=10L),file=paste0("GO10IDs_",name_base,".txt"),co
l.names=FALSE,row.names=FALSE,quote=FALSE) 
   
   
  #return summary object with data 
  return(summary(Over)) 
   
} #END GO_Comp FUNCTION######## 
 
 
 
#find genes that differ between DE gene lists 
 
#READ IN GENE LISTS 
#Chi 
genes_Chi = read.csv("gene.list_Chi_LRT_GO.txt",sep="\t",header=FALSE) 
genes_Chi <- levels(genes_Chi$V1) 
#Khalas 
genes_Khalas = read.csv("gene.list_Khalas_LRT_GO.txt",sep="\t",header=FALSE) 
genes_Khalas <- levels(genes_Khalas$V1) 
#Lulu 
genes_Lulu = read.csv("gene.list_Lulu_LRT_GO.txt",sep="\t",header=FALSE) 
genes_Lulu <- levels(genes_Lulu$V1) 
#Kenezi 
genes_Kenezi = read.csv("gene.list_Kenezi_LRT_GO.txt",sep="\t",header=FALSE) 
genes_Kenezi <- levels(genes_Kenezi$V1) 
#Nebeit Seif 
genes_NebeitSeif = read.csv("gene.list_NebeitSeif_LRT_GO.txt",sep="\t",header=FALSE) 
genes_NebeitSeif <- levels(genes_NebeitSeif$V1) 
 
#COMPARE GENE LISTS 
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#compare ChiChi and Khalas 
genes_ChiNotKhalas <- setdiff(genes_Chi,genes_Khalas) 
#compare Khalas and ChiChi 
genes_KhalasNotChi <- setdiff(genes_Khalas,genes_Chi) 
 
#write gene lists to text file 
write.table(genes_ChiNotKhalas,file="genes_ChiNotKhalas.txt",col.names=FALSE,row.names=F
ALSE,quote=FALSE) 
 
 
#Compare Lulu and Khalas 
genes_LuluNotKhalas <- setdiff(genes_Lulu,genes_Khalas) 
#Compare Khalas and Lulu 
genes_KhalasNotLulu <- setdiff(genes_Khalas,genes_Lulu) 
 
#Compare Kenezi and Khalas 
genes_KeneziNotKhalas <- setdiff(genes_Kenezi,genes_Khalas) 
#Compare Khalas and Kenezi 
genes_KhalasNotKenezi <- setdiff(genes_Khalas,genes_Kenezi) 
 
 
#FUNCTION CALLS 
#Chi vs. Khalas 
GO_ChiNotKhalas<-GO_Comp(gsc, universe, genes_ChiNotKhalas,"ChiNotKhalas") 
GO_KhalasNotChi<-GO_Comp(gsc, universe, genes_KhalasNotChi,"KhalasNotChi") 
 
#Lulu vs. Khalas 
GO_LuluNotKhalas<-GO_Comp(gsc, universe, genes_LuluNotKhalas,"LuluNotKhalas") 
GO_KhalasNotLulu<-GO_Comp(gsc, universe, genes_KhalasNotLulu,"KhalasNotLulu") 
 
#Kenezi vs. Khalas 
GO_KeneziNotKhalas<-GO_Comp(gsc, universe, genes_KeneziNotKhalas,"KeneziNotKhalas") 
GO_KhalasNotKenezi<-GO_Comp(gsc, universe, genes_KhalasNotKenezi,"KhalasNotKenezi") 
 
############END SCRIPT######################### 
 
Appendix 11. BASH GOIDs to Genes: "GOIDs_to_genes.sh" 
 
#!/bin/bash 
 
#This script finds the date palm gene IDs that connect to given GO IDs, 
#then checks which of those gene ids exist in given VarVsVar gene list, 
#and prints the passing genes to file. 
 
#read through GOID terms and find associated gene ids in GOgenedata_d_3rdrun.txt 
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while read -r line 
do 
 BPID="$line" 
 echo "$BPID" 
 
 #get gene ids that match to each GOID, print to  file 
 gene="$(grep -i "$BPID" GOgenedata_d_3rdrun.txt | cut -f 3)" 
 echo "$gene" >> go_gene.txt  
 
done < "GO10IDs_ChiNotKhalas.txt" 
 
#remove blank lines, will be no duplicates 
grep '[^[:blank:]]' go_gene.txt > go_gene_b.txt 
 
##################### 
 
#Now check which genes in go_gene_b.txt are present in orignal genes_ChiNotKhalas.txt 
 
while read -r gline 
do 
 if grep --quiet "$gline" genes_ChiNotKhalas.txt; then 
  echo "$gline" >> go_gene_b_cnk.txt 
 fi 
 
 
done < "go_gene_b.txt" 
 
#######END SCRIPT############ 
 
 
 
 
 


