
Documenta*on for NYUAD Date Palm GATK Variant-Calling Workflow
NYUAD Date Palm Diversity Project
M.Dhar (mid224) 4-24-23

INTRODUCTION

DocumentaAon and scripts stored in shared Google Drive directory at:
hFps://drive.google.com/drive/folders/1K6kMVOkhpA3xueNYX0dBd2f9ECpY1FmE?usp=share_l
ink

Background and Purpose
This is a variant-calling workflow using the GATK (Genome Analysis Toolkit:
hFps://gatk.broadinsAtute.org/hc/en-us) tools in the Nex^low pipeline framework
(hFps://www.nex^low.io/). The core Nex^low variant-calling script was developed by M. Dhar
(mid224) in 2021 for use by NYU Date Palm Diversity Project researchers. It is an adaptaAon of
the “Variant Calling Pipeline using GATK4” developed by M. Khalfan in 2020 for the Genomics
Core in 2020 (hFps://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4), a simplificaAon of
that pipeline, with adaptaAons and fine-tuning for the needs of the Date Palm group. Like that
pipeline, it uses GATK to call variants, “including single nucleoAde polymorphisms (SNPs) and
DNA inserAons and deleAons (indels), from next generaAon sequencing data.” See the
documentaAon for the Genomics Core pipeline for more details on that original pipeline and the
variant-calling process (hFps://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4).

This Date Palm workflow addiAonally includes a separate Nex^low script for conducAng FastP
preprocessing of sequence reads and a BASH script for producing symlinks to read files in the
format needed by the Nex^low scripts. This workflow runs on the NYU Greene high-
performance compuAng (HPC) cluster (hFps://sites.google.com/nyu.edu/nyu-hpc/hpc-
systems/greene).

Reference Pipeline Adapta*ons

The Genomics Core Nex^low pipeline script was adapted for use in this workflow in several
ways (see that original script on GitHub here: hFps://github.com/gencorefacility/variant-calling-
pipeline-gatk4/blob/master/main.nf):

• It was simplified to focus on the first four steps (“processes” in Nex^low terminology):
align, markDuplicatesSpark, getMetrics, and haplotypeCaller.

• An addiAonal process was added: IndexFeatureFile (another GATK tool).
• The haplotypeCaller command was updated to produce a GVCF for each sample, which

can be merged aher running the pipeline.
• The “Base Quality Score RecalibraAon” (BSQR) step of the Genomics Core pipeline (in

which variants are called first without BSQR, then used as input to BSQR, then called
again) was removed.

• To reduce disk usage, code was added to various steps to delete output produced by
previous steps in Nex^low’s “work” directories as the pipeline proceeds. Similarly, to

avoid overwhelming the default temp directory in the markDuplicatesSpark process, the
temp directory was set as a folder on the user’s “vast” directory on Greene. (You will
need to create a folder “vast<NetID>/tmp” if it doesn’t already exist and add your NetID
to the GATK pipeline configuraAon file [nex^low.config]. See below.)

• Code was added to create and sort a file containing checksum “fingerprint” for each
output.

• Code was added to trim sample pair IDs (including only up unAl the first underscore) to a
more readable format when used in output names.

• Other fine-tunings and updates have been done as needed and desired for use by the
Date Palm group researchers.

The Sarek variant-calling pipeline produced by Nex^low itself was also used as background
reference (hFps://nf-co.re/sarek).

Dates: Development and Previous Produc*on Run
The main GATK Nex^low pipeline script in this workflow was developed primarily in 2021, with
addiAonal fine-tuning and adaptaAon since then. The symlink BASH script for inputs was
developed at the same Ame. An addiAonal Nex^low pipeline script for running FastP
preprocessing was created in early 2023.

A producAon run of the GATK pipeline (without the FastP script) was completed in November
2021 on a preliminary version 2 date palm genome then in producAon by Tiago Capote. Output,
scripts, logs, and notes from that run are available in the shared Greene drive for the NYU
Michael Purugganan Lab at: /scratch/projects/puruggananlab/GVCF_pipeline_11-6-21/

PIPELINE SCRIPTS AND STEPS

Included Scripts and Needed Files
Scripts: The current Date Palm variant-calling workflow consists of three main scripts and their
associated support scripts:

• Symlink creator (BASH script): symlink_shareable_4-25-23.sh
• NexRlow FastP script and suppor*ng scripts/files:

o Nex^low script: fastp_shareable_4-25-23.nf
o Slurm wrapper script: fastp_shareable_4-25-23.s
o Nex^low config file: nexDlow.config

• NexRlow GATK variant-calling script and suppor*ng scripts/files:
o Nex^low script: main_shareable_4-25-23.nf
o Slurm wrapper script: slurm_shareable_4-25-23.s
o Nex^low config file: nexDlow.config

[Note that each Nex^low script needs an accompanying config file named “nex^low.config”.
This same name must be used. Be sure to save the respecAve nex^low scripts and their

associated config file and Slurm scripts in separate directories. See RUNNING THE PIPELINE
below.]

Needed Input and Reference Files:

• Sample reads:
o Reads: Paired forward and reverse g-zipped FastQ reads in one directory.
o Manifest: A (3-column) tab-separated file lisAng each read’s sample ID, the

forward read file name, and the reverse read file name. (An example of such a
manifest, named: manifest.3.2.2021.tsv, is also included in the
symlink_shareable_4-25-23.sh script folder in the shared script directory).

• Reference genome and associated indices:
o Reference:

§ We are currently using the NCBI date palm genome
GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_genomic.f
na (originally downloaded 6-14-22 from
hFps://hp.ncbi.nlm.nih.gov/genomes/refseq/plant/Phoenix_dactylifera/l
atest_assembly_versions/GCF_009389715.1_palm_55x_up_171113_PBp
olish2nd_filt_p/) and adapted 4-8-23 to truncate header lines (using
Picard NormalizeFasta (hFps://gatk.broadinsAtute.org/hc/en-
us/arAcles/360037067312-NormalizeFasta-Picard-).

§ This adapted version of the genome is available at:
/scratch/projects/puruggananlab/palm/PlantGenomeDownloads_2022/R
efSeq_Transfer/11IniUalDownloads/Phoenix_dactylifera_date_palm/GCF
_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_mod_headers
_4-8-13 with file
name: GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_gen
omic_mod_headers.fna

o DicAonary and indices: Several support files are needed with the genome. These
have all been created for the above genome and are available in the same
directory, as required by the pipelines:

§ FASTA dict file:
GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_genomic_
mod_headers.dict

§ FASTA index file:
GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_genomic_
mod_headers.fna.fai

§ BWA index files (for BWA alignment step):
• GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_ge

nomic_mod_headers.fna.pac
• GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_ge

nomic_mod_headers.fna.amb
GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_ge
nomic_mod_headers.fna.sa

• GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_ge
nomic_mod_headers.fna.ann README.txt

• GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_ge
nomic_mod_headers.fna.bwt

Shared Loca*on

• Scripts are located on the shared Google Drive at:
hFps://drive.google.com/drive/folders/14Y9iCZzHg0cX28kT5fsYizyAKNjFW-
JX?usp=share_link

• NCBI adjusted genome and associated indices are available on Greene shared directory
at:
/scratch/projects/puruggananlab/palm/PlantGenomeDownloads_2022/RefSeq_Transfer
/11IniUalDownloads/Phoenix_dactylifera_date_palm/GCF_009389715.1_palm_55x_up_
171113_PBpolish2nd_filt_p_mod_headers_4-8-13

Tools Used in Workflow:

• FastP
• GATK4
• BWA
• Samtools
• R (as dependency for some steps)

Steps

• The major steps of this pipeline are as follows:
o Symlinks: Create symlinks of read files with name format required by Nex^low

scripts.
o FastP: Run FastP Nex^low script to preprocess reads. (This is run as a separate

pipeline script so that you can move/archive the original samples to save space
before running the GATK pipeline script. See below.)

o Variant calling: Run GATK Nex^low script to call variants:
§ align: Map to reference genome using BWA MEM.
§ markDuplicatesSpark: Mark duplicates and sort aligned reads (BAMs)

using GATK4 MarkDuplicatesSpark.
§ getMetrics: Collect alignment and insert size metrics.
§ cleanMetrics: Remove previous steps (large) metrics files.
§ haplotypeCaller: Call variants, producing GVCF, using GATK’s

HaplotypeCaller tool.
§ IndexFeatureFile: Create feature file for above-created GVCF using GATK’s

IndexFeatureFile too.
• See Schema*c of steps in this workflow in the same Google Drive directory as this

documentaAon: GVCF_Pipeline_SchemaUc_3-27-23.pdf. For more background on these
steps, see original “Workflow Overview” in original Genome Core documentaAon

(though note above modificaAons in the Date Palm workflow):
hFps://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4

How the Scripts Work (Slurm and Config Files):

• Symlink BASH: The symlink script is a BASH script that will create appropriate names for
your sample reads. Bash scripts are launched by entering bash <script_name>.sh

• Slurm script wrappers: The Nex^low scripts are each launched by an associated Slurm
script (Slurm is the job-handling program in the HPC). (This allows the script to run in the
background without the need to keep your terminal open and avoids failure if you lose
power or connecAon to the terminal.) These are launched by entering: sbatch
<script_name>.s. The Slurm script will load the Nex^low module and launch the
Nex^low script. (It will also sort the checksum file produced by the GATK pipeline.)

• NexRlow scripts: Each process within the Nex^low scripts is launched as a separate
Slurm job. (This happens automaAcally once the overall pipeline script is launched.)
Nex^low reads in read pairs by looking for a specific paFern ending file names; this
script uses files that end in 1.fastq.gz or 2.fastq.gz (eg, “PADC1_read1.fastq.gz”). The
symlink script creates symbolic links to your sample files with the expected name
endings.

• NexRlow config file: The config file contains various parameters needed by the Nex^low
script, including sexng Slurm as the “process.executor” and sexng the resource
requests for each process.

RUNNING THE PIPELINE

To run this pipeline, you will need to prepare input files, copy scripts to directories in your
Greene scratch, and run the scripts, as follows:

• Prepare input files:
o Reference genome:

§ Copy NCBI genome: If using the same NCBI date palm genome (with
adjusted headers) as the Date Palm group, copy that genome and its
associated dict and index files (see above lists), to your scratch.
Recommended to create a specific directory for this, eg:
/scratch/<net_ID>/data/genomes. These files are available at:
/scratch/projects/puruggananlab/palm/PlantGenomeDownloads_2022/R
efSeq_Transfer/11IniUalDownloads/Phoenix_dactylifera_date_palm/GCF
_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_mod_headers
_4-8-13

§ Create indices for different genome: If using a different genome, you will
need to copy or create its indices and dict file. See GATK documentaAon
for creaAng dict and fai index files: hFps://gatk.broadinsAtute.org/hc/en-
us/arAcles/360035531652-FASTA-Reference-genome-format. For BWA
index documentaAon, on Greene, enter module load bwa/intel/0.7.17
and type bwa index for help menu. The Slurm script in the above shared

directory for the genome shows the commands used to create those
index and dict files.

o Sequence reads:
§ All pairs of forward and reverse sequence reads should be collected in

one directory.
§ These should be g-zipped FASTQ files with extension .fastq.gz
§ Create or copy in a 3-column tab-separated manifest lisAng, in order:

• Col 1: Pair ID name
• Col 2: Forward read file name
• Col 3: Reverse read file name

§ Forward and reverse reads should ideally be idenAfied by including
“read1” vs “read2” or “R1” vs “R2” somewhere in the name. However,
this is not essenAal as long as forward read (read 1) is listed in the second
column of the manifest and reverse in the third.

§ Copy the symlink script into the same directory as all reads.
• Update it as follows:

o Sample path: Set the path to the directory containing your
samples at: sample_path="<PATH_TO_SAMPLE_DIR>"

o Set the path and name of your manifest of sample names
at: manifest="<MANIFEST_FILE>"

• Run it using: bash symlink_shareable_4-25-23.sh
• This will create a folder, within the directory containing your

samples, called Sample_sodlinks. With in that folder, each read
pair will get its own subdirectory with the sample ID name. Within
each subdirectory, will be symlinks poinAng to your samples. The
files will end in “1.fastq.gz” or “2.fastq.gz” as expected by
Nex^low scripts.

• Copy NexRlow scripts
o Place the two Nex^low scripts and their associated config files and Slurm in

separate directories, eg:
§ Directory FastP_Pipeline, containing:

• fastp_shareable_4-25-23.nf
• fastp_shareable_4-25-23.s
• nexDlow.config

§ Directory GATK_Pipeline, containing:
• main_shareable_4-25-23.nf
• slurm_shareable_4-25-23.s
• nexDlow.config

o Note that the Nex^low config file for each Nex^low script above (FastP and GATK
scripts) must have the name “nex^low.config”, which is automaAcally idenAfied
as the configuraAon file by the Nex^low script. Place in separate directories to
avoid overwriAng.

• Update scripts and config file:

o Slurm wrapper scripts:
§ Update to send the job noAce to your email address:

• #SBATCH --mail-user=<email_address>
• [Note: the Slurm wrapper script doesn’t access the Nex^low

config script, so set your email address with your NetID manually
here.]

§ Update the job name in:
• #SBATCH --job-name=<job_name>

o Config files: You will need to set several parameters in the nex^low.config files
for each Nex^low script.

§ Input reads--FastP: For the FastP config file, set the locaAon of the input
reads by poinAng to the directory created by the symlink script
(Sample_sodlinks). This done in the line: params.reads =
"$SCRATCH/<PATH>/Sample_sodlinks/*/*{1,2}.fastq.gz"

• The ending is a paFern (glob paFern) that tells the Nex^low step
that reads in sample names to look for file pairs that end in
“1.fastq.gz” and “2.fastq.gz”.

• The asterisk within slash marks (/*/) tells the paFern to go into
each subdirectory for each read pair in Sample_sodlinks, eg,
Sample_sodlinks/PDAC1.

§ Input reads:--GATK For the GATK config file, set the locaAon of the input
reads by poinAng to the output file of the FastP nex^low script:
params.reads =
"$SCRATCH/<PATH_to_FastP_Directory>/out/out/fastp/*/*{1,2}.fastq.gz"

§ Out directory: For both config files, set the output directory as:
params.outdir = "$SCRATCH/<PATH_to_Script_Directory>/out". That is, it
should point to the directory in which you’ve copied the respecAve
nex^low scripts.

§ Reference genome: For GATK, set the reference genome in the line, eg:
params.ref =
"$SCRATCH/data/genome_assemblies/GCF_009389715.1_palm_55x_up_
171113_PBpolish2nd_filt_p_mod_headers_4-8-
13/GCF_009389715.1_palm_55x_up_171113_PBpolish2nd_filt_p_genom
ic_mod_headers.fna"

§ PlaRorm: For GATK, set the pla^orm used to produce the reads (likely,
Illumina), as in: params.pl = "ILLUMINA"

• This is used to create the read group in the script.
§ NetID: For GATK, enter your NetID (the ID before the @ symbol in your

NYU email address) at: params.netID = "<NetID>".
• This is used to direct temp files from markDuplicatesSpark to a

temp folder in the vast directory named /vast/<NetID>/tmp.
• Create this tmp folder if it doesn’t already exist in your vast

directory. (Don’t overwrite it if it does already exist.)

• This is done to avoid overwhelming the default temp directory in
large pipeline runs.

§ Resource Requests: Resource requests for each process within the
Nex^low pipeline are set at the end of the config file. You may want to
adjust these depending on the size of your job and files.

• Run NexRlow script Slurm wrappers:
o FastP: Launch the FastP Nex^low script via its Slurm wrapper by entering: sbatch

fastp_shareable_4-25-23.s
§ Slurm will output a slurm job number. Copy this number to monitor your

job.
§ Once this job is completed, you may want to archive or move the original

(pre-FastP) samples to free up space.
o GATK: Once FastP has completed and you have verified the preprocessed

outputs, launch the GATK Nex^low script via its Slurm wrapper by entering:
slurm_shareable_4-25-23.s

§ Again, copy Slurm job number.
• Output:

o Work directory: Nex^low will do its processing within a work directory called
nexDlow_work_dir within the out directory you set in the config file above. Find
it at out/nexDlow_work_dir in your script directory.

o Output directory: Readable, organized output from each process will be
“published’ to output folders within a directory called “out” within the overall
output directory you defined above.

§ That means output will be within an out/out path.
§ Each process has its own subdirectory, so for example, output for

haplotype caller (ie, the GVCFs), will be published to
out/out/haplotype_caller.

§ To save space, original BAMs from the alignment step are not published;
only deduplicated BAMs are published.

§ The overall out/out folder will also contain the checksum file
(checksum.txt). At the end of the pipeline, entries will be sorted, as:
checksum_sorted.txt.

• Monitoring script runs and reports:
o You can monitor your ongoing Nex^low pipelines in several ways:

§ Enter squeue -u <netID> to see the status of your Slurm jobs. This will
include entries for the overall wrapper Slurm scripts you launched above
as well as the jobs spawned by the Nex^low script. (Use the Slurm job
numbers generated above to find the overall wrapper script runs.)

§ Read the Slurm job log for your overall script. You can view this using the
Slurm job number copied above. The log will be in the same directory
where you launched the job. Enter cat *<job_number>* to output
contents to screen.

§ Aher the pipeline finishes or fails, view the Nex^low report in the file
named “report_slurm_%j.html”. If you run mulAple jobs in the same

directory, the old report will get a number appended (eg,
report_slurm_%j.html.1). These will always go in reverse order, ie, the
newest job will have no number, the next newest will have 1, and the next
newest 2, etc. You can view these html files by downloading to your home
machine and opening with a web browser.

§ Aher the pipeline finishes or fails, you should also receive an email
(although, this can someAmes fail to send if the job fails).

§ To view the Nex^low log for troubleshooAng, list invisible files in your
pipeline script directory using ls -a. This file will be named .nexDlow

• Note the period before the name.

TROUBLESHOOTING/TIPS

• Resume: Nex^low has a “resume” funcAon that allows you to restart a failed or stopped
pipeline aher its last completed step. This sexng is used automaAcally in the Slurm
wrapper scripts that launch the Nex^low scripts. However, it will not work for many of
the steps in this pipeline due to the deleAon of previous output for disk space-saving
purposes. If you want to be able to resume at each step (eg, during tesAng), you’ll need
to comment out the deleAon steps for old files. M. Dhar may be able to help with this.

• Space: If you need to save more space, you may want to comment out the Samtools
depth command from the getMetrics step (as well as its reference in the output of that
step). M. Dhar may be able to help with this if necessary.

• Time: ParAcularly with haplotypeCaller jobs, you may need to monitor your Slurm queue
to see if any are going to run out of Ame and ask HPC support (Shenglong at
hpc@nyu.edu) to add clock Ame to that job. Monitor by entering squeue -u <netID>

• Tes*ng/subfolders: If you’re doing tesAng and/or mulAple runs, you may want to create
a new subfolder and copy in the scripts and config file. Be sure to update the “out” file
path in config to the new folder. If you want to run a new job in the same directory,
archive your “out” directory to avoid overwriAng.

• Tes*ng samples: M.Dhar can provide a set of 1 short sample for quick tesAng (PACA1) or
a set of two samples (one longer) for tesAng of mulAple sample runs (PACA1 and
PDAC106). (You might want to try saving these with longer names to test the symlink
renaming funcAon.) J. Flowers may have test files to use as well.

• NexRlow vs BASH variables: Within each Nex^low process, the “script” is a BASH
command running the respecAve tool (this BASH script is contained within 2 sets of 3
quotaAon marks). Note, however, that it does not behave perfectly as BASH. For
example, to use a BASH variable within the script—and not interpret it as a Nex^low
variable—it must be escaped with a slash sign. Instead of using $VARIABLE_NAME, you
would use \$VARIABLE_NAME.

